Experimental Study on Thermochemical Water Splitting Hydrogen Production Using $MnO_2/Mn_2O_3$/NaOH System Added with $ZrO_2$

$ZrO_2$ 첨가 $MnO_2/Mn_2O_3$/NaOH 계를 이용한 열화학적 물분해 수소제조 실험 연구

  • Cha, Kwang-Seo (Department of Fine Chemical Engineering and Chemistry, Chungnam National University) ;
  • Ryu, Jae-Chun (Department of Fine Chemical Engineering and Chemistry, Chungnam National University) ;
  • Lee, Dong-Hee (Department of Fine Chemical Engineering and Chemistry, Chungnam National University) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering and Chemistry, Chungnam National University) ;
  • Park, Chu-Sik (Korea Institute of Energy Research) ;
  • Kim, Jong-Won (Korea Institute of Energy Research)
  • 차광서 (충남대학교 정밀공업화학과) ;
  • 류재춘 (충남대학교 정밀공업화학과) ;
  • 이동희 (충남대학교 정밀공업화학과) ;
  • 김영호 (충남대학교 정밀공업화학과) ;
  • 박주식 (한국에너지기술연구원) ;
  • 김종원 (한국에너지기술연구원)
  • Published : 2006.12.15

Abstract

As one of the thermochemical water splitting hydrogen production cycles, which could be operated at the lower temperature below 1200 K, we investigated the feasibility of the cyclic operation of Ispra Mark 2 cycle with the addition of $ZrO_2$. The cycle is theoretically composed of three reaction steps; (1) 1st step($2MnO_2{\rightarrow}Mn_2O_3+0.5O_2$), (2) 2nd step($Mn_2O_3+4NaOH{\rightarrow}2Na_2O{\cdot}MnO_2+H_2+H_2O$) and (3) 3rd step($2Na_2O{\cdot}MnO_2H_2O{\rightarrow}4NaOH+2MnO_2$). From the TPR tests, the temperature ranges for $O_2$ production in 1st step and $H_2$ production in 2nd step were $550{\sim}750^{\circ}C$ and $650{\sim}750^{\circ}C$, respectively. In $MnO_2/Mn_2O_3/NaOH$ system, the formation of molten products due to the reaction between manganese oxides and NaOH were greatly decreased with the addition of $ZrO_2$. In addition, the results of a cyclic test were discussed with the viewpoint of $H_2$ production amounts and the feasibility of the process improvement.

Keywords

References

  1. J. E. Funk, and R. M. Reinstrom, 'Energy requirements in the production of hydrogen from water', Ind. Eng. Chern. Proc. Des. Develop., Vol. 5, No.3, 1966, p. 336
  2. T. Nakamura, 'Hydrogen production from water utilizing solar heat at high temperatures', Solar Energy, Vol. 19, 1977, p. 467 https://doi.org/10.1016/0038-092X(77)90102-5
  3. K. Wegner, H. C. Ly, R. J. Weiss, S. E. Pratsinis, and A. Steinfeld, 'In situ formation and hydrolysis of Zn nanoparticles for $H_2$ production by the 2-step ZnO/Zn water-splitting thermochemical cycle', Int. J. Hydrogen Energy, Vol. 31, No.1, 2006, p. 55 https://doi.org/10.1016/j.ijhydene.2005.03.006
  4. M Sturzenegger and P. Nuesch, 'Efficiency analysis for a manganese-oxic:Je..based thenmchemical cycle', Energy, Vol. 24, No. 11, 1999, p. 959 https://doi.org/10.1016/S0360-5442(99)00049-3
  5. M. Sturzenegger, J. Ganz, P. Nuesch, and T. Schelling, 'Solar hydrogen from a manganese oxide based thermochemical cycle', Journal De Physique IV, Vol. 9, 1999, p. 331
  6. C. Perkins and A. W. Weimer, 'Likely near-term solar-thermal water splitting technologies', Int. J. Hydrogen Energy, Vol. 29, No. 15, 2004, p. 1587 https://doi.org/10.1016/j.ijhydene.2004.02.019
  7. H. Kaneko, N. Gokon, N. Hasegawa, and Y. Tarnaura, 'Solar thermochemical process for hydrogen production using ferrites', Energy, Vol. 30, No. 11, 2005, p. 2171 https://doi.org/10.1016/j.energy.2004.08.020
  8. 신현창, 최승철, 심철성, 김종원, 주오심, 정광덕, '열화학 사이클 $H_2$ 제조를 위한 ($CO_{0.5}Mn_{0.5}$)$Fe_2O_4$의 열적 거동', 한국수소 및 신에너지학회논문집, Vol. 13, No. 2, 2002, p. 143
  9. 한상범, 강태범, 주오심, 정광덕, '$NiFe_2O_4$를 이용한 열화학 사이클 $H_2$ 제조', 한국수소 및 신에너지학회논문집, Vol. 14, No. 14, 2003, p. 298
  10. 김진웅, 최승철, 주오심, 정광덕, '열화학싸이클 수소 제조를 위한 ($Cu_{0.5}Mn_{0.5}$)$Fe_2O_4$ 의 열적 거통', 한국수소 및 신에너지학회논문집, Vol. 15, No.1, 2004, p. 32
  11. 박주식, 서인태, 김정민, 이상호, 황갑진, '금속산화물(Cu-ferrite)를 이용한 수소제조 연구', 한국수소 및 선에너지학회논문집, Vol. 15, No.3, 2004, p. 201
  12. 조미선, 김우진, 김창희, 강경수, 김영호, 박주식, '고 에너지 볼 밀링을 통한 Co-ferrite 제조 및 열적 환원에 대한 연구', 한국수소 및 신에너지학회논문집, Vol. 17, No.3, 2006, p. 309
  13. T. Kodama, Y. Kondoh, R. Yamamoto, H. Andou, and N. Satou, 'Thermochemical hydrogen production by a redox system of $ZrO_2$-supported Co(II)-ferrite', Solar Energy, Vol. 78, No.5, 2005, p. 623 https://doi.org/10.1016/j.solener.2004.04.008
  14. C. Agrafiotis, M. Roeb, A. G. Konstandopoulos, L. Nalbandian, V. T. Zaspalis, C. Sattler, P. Stobbe, and A. M. Steele, 'Solar water splitting for hydrogen production with monolithic reactors', Solar Energy, Vol. 79, No.4, 2005, p.409 https://doi.org/10.1016/j.solener.2005.02.026
  15. G. E. Beghi, 'A decade of research on thermochemical hydrogen at the Joint Research Centre, Ispra', Int. J. Hydrogen Energy, Vol. 11, No. 12, 1986, p. 761 https://doi.org/10.1016/0360-3199(86)90172-2
  16. E. R. Stobbe, B. A. de Boer, and J. W. Geus, 'The reduction and oxidation behaviour of manganese oxides', Catal. Today, Vol. 47, No. 14, 1999, p. 161 https://doi.org/10.1016/S0920-5861(98)00296-X
  17. M. I. Zaki, M. A. Hasan, L. Pasupulety, and K Kumari, 'Thermochemistry of manganese oxides in reactive gas atmospheres ; Probing redox compositions in the decomposition course $MnO_2$$\rightarrow$MnO', Thermochimica Acta, Vol. 303, No.2, 1997, p. 171 https://doi.org/10.1016/S0040-6031(97)00258-X