DOI QR코드

DOI QR Code

Bending and free vibration analysis of a smart functionally graded plate

  • Bian, Z.G. (Department of Civil Engineering, Zhejiang University, State Key Lab of CAD & CG, Zhejiang University, Department of Construction Engineering, Ningbo Institute of Technology, Zhejiang University) ;
  • Ying, J. (Department of Mechanical Engineering, Zhejiang University) ;
  • Chen, W.Q. (Department of Civil Engineering, Zhejiang University, State Key Lab of CAD & CG, Zhejiang University) ;
  • Ding, H.J. (Department of Civil Engineering, Zhejiang University)
  • Received : 2005.02.14
  • Accepted : 2006.01.17
  • Published : 2006.05.10

Abstract

A simply supported hybrid plate consisting of top and bottom functionally graded elastic layers and an intermediate actuating or sensing homogeneous piezoelectric layer is investigated by an elasticity (piezoelasticity) method, which is based on state space formulations. The general spring layer model is adopted to consider the effect of bonding adhesives between the piezoelectric layer and the two functionally graded ones. The two functionally graded layers are inhomogeneous along the thickness direction, which are approached by laminate models. The effect of interlaminar bonding imperfections on the static bending and free vibration of the smart plate is discussed in the numerical examples.

Keywords

References

  1. Aboudi, J. (1987), ' Damage in composites-modeling of imperfect bonding ', Comp. Sci. Tech., 28, 103-128 https://doi.org/10.1016/0266-3538(87)90093-5
  2. Ali, R., Roy, M.D. and Gopalakrishnan, S. (2004),' An analytical model of constrained piezoelectric thin film sensors ', Sensors and Actuators A: Physical, 116,424-437 https://doi.org/10.1016/j.sna.2004.05.028
  3. Bahar, L.Y (1975), ' A state space approach to elasticity ', J. Franklin Institute, 299, 33-41 https://doi.org/10.1016/0016-0032(75)90082-4
  4. Batra, R.C. and Liang, X.Q. (1997), ' The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators ', Comput. Struct., 63, 203-216 https://doi.org/10.1016/S0045-7949(96)00349-5
  5. Cai, J.B., Chen, W.Q. and Ye, G.R. (2004), ' Effect of interlaminar bonding imperfections on the behavior of angle-ply laminated cylindrical panels ', Comp. Sci. Tech., 64, 1753-1762 https://doi.org/10.1016/j.compscitech.2003.12.009
  6. Chee, c., Tong, L. and Steven, GP. (2001),' Static shape control of composite plates using a curvaturedisplacement based algorithm ', Int. J. Solids Struct., 38, 6381-6403 https://doi.org/10.1016/S0020-7683(01)00049-X
  7. Chee, C., Tong, L. and Steven, G.P. (2002), ' Piezoelectric actuator orientation optimization for static shape control of composite plates ', Comp. Struct., 55, 169-184 https://doi.org/10.1016/S0263-8223(01)00144-1
  8. Chen, W.Q., Cai, J.B. and Ye, G.R. (2003a), ' Exact solutions of cross-ply laminates with bonding imperfections', AIAA J., 41, 2244-2250 https://doi.org/10.2514/2.6817
  9. Chen, W.Q., Bian, Z.G. and Ding, H.J. (2003b), ' Three-dimensional analysis of a thick FGM rectangular plate in thermal environment ', J. Zhejiang University (Science), 4,1-7 https://doi.org/10.1631/jzus.2003.0001
  10. Chen, W.Q. and Lee, K.Y. (2004a), ' Exact solution of angle-ply piezoelectric laminates in cylindrical bending with interfacial imperfections ', Comp. Struct., 65, 329-337 https://doi.org/10.1016/j.compstruct.2003.11.008
  11. Chen, W.Q. and Lee, K.Y (2004b), ' Three-dimensional exact analysis of angle-ply laminates in cylindrical bending with interfacial damage via state-space method ', Comp. Struct., 64, 275-283 https://doi.org/10.1016/j.compstruct.2003.08.010
  12. Chen, W.Q., Ying, J., Cai, J.B. and Ye, G.R. (2004a), ' Benchmark solution of imperfect angle-ply laminated rectangular plates in cylindrical bending with surface piezoelectric layers as actuator and sensor ', Comput. Struct., 82,1773-1784 https://doi.org/10.1016/j.compstruc.2004.05.011
  13. Chen, W.Q., Ying, J., Cai, J.B. and Ye, G.R. (2004b), ' Benchmark solution of laminated beams with bonding imperfections ', AIAA J., 42, 426-429 https://doi.org/10.2514/1.4776
  14. Chen, W.Q., Wang, Y.F., Cai, J.B. and Ye, G.R. (2004c), ' Three-dimensional analysis of cross-ply laminated cylindrical panels with weak interfaces ', Int. J. Solids Struct., 41, 2429-2446 https://doi.org/10.1016/j.ijsolstr.2003.12.018
  15. Chen, W.Q., Cai, J.B., Ye, G.R. and Wang, Y.F. (2004d), ' Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer ', Int. J. Solids Struct., 41, 5247-5263 https://doi.org/10.1016/j.ijsolstr.2004.03.010
  16. Chen, W.Q., Bian, Z.G, Lv, C.F. and Ding, H.J. (2004e),' 3D tree vibration analysis of a functionally graded piezoelectlic hollow cylinder filled with compressible fluid ', Int. J. Solids Struct., 41, 947-964 https://doi.org/10.1016/j.ijsolstr.2003.09.036
  17. Cheng, Z.Q. and Batra, R.C. (2001), ' Thermal effects on laminated composite shells containing interfacial imperfections ', Comp. Struct., 52, 3-11 https://doi.org/10.1016/S0263-8223(00)00197-5
  18. Cheng, Z.Q. and Kitipomchai, S. (2000),' Prestressed composite laminates featuring interlaminar imperfection ', Int. J. Mech. Sci., 42, 425-443 https://doi.org/10.1016/S0020-7403(99)00012-0
  19. Cheng, Z.Q., Jemah, A.K. and Williams, F.W (1996),' Theory for multilayered anisotropic plates with weakened interfaces ', J. Appl. Mech., 63, 1019-1026 https://doi.org/10.1115/1.2787221
  20. Deu, J.F. and Benjeddou, A. (2005),' Free-vibration analysis of laminated plates with embedded shear-mode piezoceramic layers ', Int. J .Solids Struct., 42, 2059-2088 https://doi.org/10.1016/j.ijsolstr.2004.09.003
  21. Ding, H.J. and Chen, W.Q. (2001), Three Dimensional Problems of Piezoelasticity, New York, Nova Science Publishers
  22. Fuchiyama, T. and Noda, N. (1995),' Analysis of thermal stress in a plate of functionally gradient material ', JSAE Rev, 16,263-268 https://doi.org/10.1016/0389-4304(95)00013-W
  23. He, X.Q., Ng, T.Y., Sivashanker, S. and Liew, K.M. (2001), ' Active control of FGM plates with integrated piezoelectric sensors and actuators' , Int. J. Solids Struct., 38, 1641-1655 https://doi.org/10.1016/S0020-7683(00)00050-0
  24. Icardi, U., Di Sciuva, M. and Librescu, L. (2000), ' Dynamic response of adaptive cross-ply cantilevers featuring interlaminar bonding imperfections ', AIAA J., 38, 499-506 https://doi.org/10.2514/2.988
  25. Koizumi, M. (1997), ' FGM activities in Japan ', Composites B, 28, 1-4 https://doi.org/10.1016/S1359-8368(96)00016-9
  26. Lee, J.S. and Jiang, L.Z. (1996), ' Exact electroelastic analysis of piezoelectric laminate via state space approach ' , Int. J. Solids Struct., 33, 977-990 https://doi.org/10.1016/0020-7683(95)00083-6
  27. Li, C.Y. and Weng, G.J. (2002), ' Antiplane crack problem in functionally graded piezoelectric materials ', J. Appl. Mech., 69, 481-488 https://doi.org/10.1115/1.1467091
  28. Liew, K.M., He, X.Q., Ng, T.Y. and Sivashanker, S. (2001), ' Active control of FGM plates subjected to a temperature gradient: Modelling via finite element method based on FSDT ', Int. J. Numer. Meth. Eng., 52,1253-1271 https://doi.org/10.1002/nme.252
  29. Liew, K.M., He, X.Q., Ng, T.Y. and Kitipomchai, S. (2003), ' Finite element piezothermoelasticity analysis and the active control of FGM plates with integrated piezoelectric sensors and actuators', Comput. Mech., 31, 350-358
  30. Liu, G.R., Dai, K.Y., Han, X. and Ohyoshi, T. (2003), ' Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates ', J. Sound Vib., 268, 131-147 https://doi.org/10.1016/S0022-460X(02)01494-3
  31. Meguid, S.A. and Wang, X.D. (1999), ' Wave scattering from cracks and imperfectly bonded inhomogeneities in advanced materials ', Mech. Mater., 31, 187-195 https://doi.org/10.1016/S0167-6636(98)00059-3
  32. Noor, A.K. and Burton, W.S. (1990), ' Assessment of computational models for multilayered composite shells ', Appl. Mech. Rev., 43, 67-97 https://doi.org/10.1115/1.3119162
  33. Ootao, Y. and Tanigawa, Y. (2000), 'Three-dimensional transient piezothermoelasticity in functionally graded rectangular plate bonded to a piezoelectric plate ' Int. J .Solids Struct., 37, 4377-4401 https://doi.org/10.1016/S0020-7683(99)00257-7
  34. Pagano, N.J. (1969), ' Exact solutions for composite laminates in cylindrical bending ', J. Comp. Mater., 3, 398-411 https://doi.org/10.1177/002199836900300304
  35. Ray, M.C., Rao, K.M. and Samanta, B. (1992), ' Exact analysis of coupled electroelastic behaviour of a piezoelectric plate under cylindrical bending ', Comput. Struct., 45, 667-677 https://doi.org/10.1016/0045-7949(92)90485-I
  36. Ray, M.C., Bhattacharya, R. and Samanta, B. (1998),' Exact solutions for dynamic analysis of composite plates with distributed piezoelectric layers ', Comput. Struct., 66, 737-743 https://doi.org/10.1016/S0045-7949(97)00126-0
  37. Roh, J.H. and Kim, J.H. (2003), ' Adaptability of hybrid smart composite plate under low velocity impact ', Composites Part B: Engineering, 34, 117-125 https://doi.org/10.1016/S1359-8368(02)00098-7
  38. Rokhlin, S.l., Wang, L., Xie, B., Yakovlev, V.A and Adler, L. (2004),' Modulated angle beam ultrasonic spectroscopy for evaluation of imperfect interfaces and adhesive bonds ', Ultrasonics, 42, 1037-1047 https://doi.org/10.1016/j.ultras.2003.12.025
  39. Saravanos, D.A. and Heyliger, P.R. (1995), ' Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators ', J. Intelligent Mater. Systems and Struct., 6, 350-363 https://doi.org/10.1177/1045389X9500600306
  40. Shen, H.S. and Liew, K.M. (2004), ' Postbuckling of axially loaded functionally graded cylindrical panels with piezoelectric actuators in thermal environments ', J. Eng. Mech., 130, 982-995 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:8(982)
  41. Vel, S.S. and Batra, R.C. (2001),' Exact solution for the cylindrical bending of laminated plates with embedded piezoelectric shear actuators ', Smart Mater. Struct., 10, 240-251 https://doi.org/10.1088/0964-1726/10/2/309
  42. Yang, J., Kitipomchai, S. and Liew, K.M. (2004), ' Non-linear analysis of the thermo-electro-mechanical behaviour of shear deformable FGM plates with piezoelectric actuators ', Int. J . Numer. Meth. Eng., 59, 1605-1632 https://doi.org/10.1002/nme.932

Cited by

  1. Elasticity solutions for a uniformly loaded annular plate of functionally graded materials vol.30, pp.4, 2008, https://doi.org/10.12989/sem.2008.30.4.501
  2. Thermoelastic Analysis of FG-CNT Reinforced Shear Deformable Composite Plate Under Various Loadings vol.14, pp.02, 2017, https://doi.org/10.1142/S0219876217500190
  3. A novel efficient method to evaluate the dynamic response of laminated plates subjected to underwater shock vol.332, pp.21, 2013, https://doi.org/10.1016/j.jsv.2013.05.028
  4. Large deformation bending analysis of functionally graded spherical shell using FEM vol.53, pp.4, 2015, https://doi.org/10.12989/sem.2015.53.4.661
  5. Steady-state response and free vibration of an embedded imperfect smart functionally graded hollow cylinder filled with compressible fluid vol.34, pp.4, 2010, https://doi.org/10.12989/sem.2010.34.4.449
  6. Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method vol.37, pp.5, 2006, https://doi.org/10.12989/sem.2011.37.5.529
  7. Axisymmetrical bending of single- and multi-span functionally graded hollow cylinders vol.45, pp.3, 2006, https://doi.org/10.12989/sem.2013.45.3.355
  8. Bending and free vibration analysis of laminated piezoelectric composite plates vol.75, pp.6, 2006, https://doi.org/10.12989/sem.2020.75.6.747