Effect of pH Control on Physico-chemical Characteristics of Chicken Breast Surimi

닭가슴살 Surimi의 이화학적 특성에 미치는 pH 조절의 영향

  • Jin Sang-Keun (Department of Animal Resources Technology, Jinju National University) ;
  • Kim Il-Suk (Department of Animal Resources Technology, Jinju National University) ;
  • Hur Sun-Jin (Department of Animal Resources Technology, Jinju National University) ;
  • Park Ki-Hun (Department of Animal Resources Technology, Jinju National University) ;
  • Ha Ji-Hee (Department of Animal Resources Technology, Jinju National University) ;
  • Kang Seoc-Mo (Department of Animal Resources Technology, Jinju National University) ;
  • Choi Yeung-Joon (Division of Marine Bioscience and Institute of Marine Industry, Gyeongsang National University) ;
  • Kim Jin-Soo (Division of Marine Bioscience and Institute of Marine Industry, Gyeongsang National University)
  • 진상근 (진주산업대학교 동물소재공학과) ;
  • 김일석 (진주산업대학교 동물소재공학과) ;
  • 허선진 (진주산업대학교 동물소재공학과) ;
  • 박기훈 (진주산업대학교 동물소재공학과) ;
  • 하지희 (진주산업대학교 동물소재공학과) ;
  • 강석모 (진주산업대학교 동물소재공학과) ;
  • 최영준 (경상대학교 해양생물이용학부) ;
  • 김진수 (경상대학교 해양생물이용학부)
  • Published : 2006.03.01

Abstract

This study was conducted to determine the effect of pH adjustment on physico-chemical characteristics of chicken breast surimi. The chicken breast meat was ground with distilled water, of which pH was then adjusted to 2.5 (T1), 3.0 (T2), 10.5 (T3) and 11.0 (T4) for surimi manufacture, respectively. Water content was higher in order of T4>T1>T3>T2 (p<0.05). Crude protein and crude fat were higher in T3 and T4 compared with T1 and T2 (p<0.05). $L^*$ values, myofibrillar protein and water holding capacity of T2 and T4 were higher than those of T1 and T3 (p<0.05). T4 had the lowest yield among the treatments (p<0.05). T1 was higher in yield and pH, whereas breaking force and deformation were higher in T1 (p<0.05). $a^*$ was higher in order of T3>T2>T4>T1 and $b^*$ was lower in T1 compared with other treatments (p<0.05). In textural properties, the chewiness values of T2 and T3 were higher than those of T1 and T4, the hardness was higher in order of T2>T3>T4>T1 (p<0.05). Cohesiveness and gumminess of T1 showed higher values than those of other treatments (p<0.05). In sensory evaluation, the note for appearance was higher in T2 than other treatments (p<0.05), however other traits were not significantly different (p>0.05). Therefore, the alkaline processing (T4, pH 11.0) would be recommended.

닭가슴살을 이용하여 pH를 2.5(T1), 3.0(T2), 10.5(T3) 및 11.0(T4)으로 조절하여 제조한 수리미의 이화학적 특성을 비교한 결과는 다음과 같다. 수분 함량은 T4>T1>T3>T2 순이었으며, 조단백질 및 조지방 함량은 알칼리 처리한 구들이 산 처리한 구들에 비하여 높았으며, 염용성 단백질 추출성, 보수력 및 육색 $L^*$값은 동일한 산과 알칼리 처리구 내에서 pH가 높을수록 높게 나타났다(p<0.05). 수율은 T1이 가장 높았고 T4가 가장 낮았다(p<0.05). pH는 T4가 가장 높았으며, T2, T3가 낮았고, 전단가는 알칼리 처리구들이 산 처리구들에 비하여 높았다(p<0.05). 파괴강도 및 변형값은 T1이 다른 세 처리구들에 비하여 높았다(p<0.05). 육색 $a^*$값은 T3>T2>T4>T1 순이었고, $b^*$값은 T4가 다른 세 처리구들에 비하여 낮았다(p<0.05). 조직감 중 씹힘성은 T2, T3가 T1과 T4에 비하여 높았으며, 경도는 T2>T3>T4>T1 순이었고, 응집성과 검성은 T1이 다른 세 처리구들에 비하여 낮았으며, 탄력성은 T4가 가장 높고 T2가 가장 낮았다(p<0.05). 표면경도는 T3가 가장 높고 T1이 가장 낮았다(p<0.05). 관능검사의 외관은 T2가 가장 높고 T3가 가장 낮은 것(p<0.05)을 제외하고는 전 항목에서 처리 간에 유의적인 차이를 보이지 않았다(p>0.05). 종합적으로 볼 때 pH 11.0으로 조절한 알칼리 처리구인 T4가 다른 세 처리구들에 비하여 수리미의 이화학적 품질이 양호한 결과였다.

Keywords

References

  1. AOAC (1999) Official Methods of Analysis 15th ed. Assosiation of Official Analytical Chemists. Washington, D. C
  2. Antonomanolaki, R. E., Vareltzis, K. P., Georgakis, S. A., and Kaldrymidou, E. (1999) Thermal gelation properties of surimi-like material made from sheep meat. Meat Sci. 35, 429-435
  3. Bendall, J. R. and Swatland, H. J. (1988) A review of the relationships of pH with physical aspects of pork quality. Meat Sci. 24, 85-126 https://doi.org/10.1016/0309-1740(88)90052-6
  4. Choi, Y. J. and Park, J. W. (2000) Feasibility study of new acid-aided surimi processing methods for enzyme­laden Pacific whiting. Abstract No 51A-4 presented at 2002 Annual Meeting of the Institute of Food Tech­nologist. Dallas, TX, USA
  5. Choi, Y. J. and Park, J. W. (2002) Acid-aided protein recovery enzyme-rich Pacific whiting. J. Food Sci. 67, 2962-2969 https://doi.org/10.1111/j.1365-2621.2002.tb08846.x
  6. Jung, C. H., Kim, J. S., Jin, S. K, Kim, I. S., Jung, K. J., and Choi, Y. J. (2004a) Gelation properties and industrial application of functional protein from fish muscle-1. Effect of pH on chemical bonds during thermal denaturation. J. Kor. Soc. Food Sci. Nutr. 33, 1668-1675 https://doi.org/10.3746/jkfn.2004.33.10.1668
  7. Jung, C. H., Kim, J. S., Jin, S. K, Kim, I. S., Jung, K. J., and Choi, Y. J. (2004b) Gelation properties and industrial application of functional protein from fish muscle-2. Properties of functional protein gel from fish, chicken breast and pork leg and optimum formulation. J. Kor. Soc. Food Sci. Nutr. 33, 1676-1684 https://doi.org/10.3746/jkfn.2004.33.10.1676
  8. Kim, Y. S., Park, J. W., and Choi, Y. J. (2002) Physicochemical characteristics of fish proteins at various pH conditions. Abstract No 56-4 presented at 2002 Annual Meeting of the Institute of Food Technologist. Dallas. CA. USA
  9. Lanier, T. C. (1986) Functional properties of surimi. Food Tech. 40, 107-114
  10. Lee, C. M. (1984) Surimi process technology. Food Tech. 38, 69-80
  11. Lin, T. M. and Park, J. W. (1996) Extraction of proteins from pacific whiting mince at various washing conditions. J. Food Sci. 61, 432-438 https://doi.org/10.1111/j.1365-2621.1996.tb14210.x
  12. Nowsad, A. A. K. M., Kanoh, S., and Niwa, E. (2000) Thermal gelation characteristics of breast and thigh mu­scles of spent hen and broiler and their surimi. Meat Sci. 54, 169-175 https://doi.org/10.1016/S0309-1740(99)00091-1
  13. Pacheco-Aguilar, R., Crawford, D. L., and Lampila, L. E. (1989) Procedures for the efficient washing of minced whiting (Merluccius products) flesh for surimi production. J. Food Sci. 54, 248-252 https://doi.org/10.1111/j.1365-2621.1989.tb03054.x
  14. Park, J. D., Jung, C. H., Kim, J. S., Cho, D. M., Cho, M. S., and Choi, Y. J. (2003) Surimi processing using acid and alkai solubilization of fish muscle protein. J. Kor. Soc. Food Sci. Nutr. 32, 400-405 https://doi.org/10.3746/jkfn.2003.32.3.400
  15. Park, J. W. and Morrissey, M. T. (2000) Manufacturing of surimi from light muscle fish. In J. W. Park(Ed.), Surimi and surimi seafood, New York, Marcel Dekker, 23-58
  16. Reppond, K. D. and Babbitt, J. K. (1997) Gel properties of surimi from various fish species as affected by moisture content. J. Food Sci. 62, 33-36 https://doi.org/10.1111/j.1365-2621.1997.tb04362.x
  17. SAS (1999) SAS/STAT Software for Pc. Release 6.11, SAS Institute, Cary, NC. USA
  18. Toyoda, K, Kimura, I., Fujita, T., Noguchi, S. F., and Lee, C. M. (1992) The surimi manufacturing process. In: T. C. Lanier and C. M. Lee, Editors, Surimi Technology, Marcel Dekker, New York, 79-112
  19. Undeland, I., Kelleher, S. D., and Hultin, H. O. (2002) Recovery of functional proteins from herring ( Clupea harengus) light muscle by an acid and alkaline solubili­zation process. J. Agric. Food Chem. 50, 7371-7379 https://doi.org/10.1021/jf020199u
  20. Wimmer, M. P., Sebranek, J. G., and McKeith, F. K. (1993) Washed mechanically separated pork as a surimi­like meat product ingredient. J. Food Sci. 58, 254- 258 https://doi.org/10.1111/j.1365-2621.1993.tb04250.x