Concentration of Citrus Essence Aroma Model Solution by Pervaporation

투과증발법을 이용한 감귤 Essence Aroma 모델액의 농축

  • Lee Yong-Taek (College of Environment and Applied Chemistry Chemical Engineering & Advanced Materials Engineering, Kyung Hee University) ;
  • Park Joong-Won (College of Environment and Applied Chemistry Chemical Engineering & Advanced Materials Engineering, Kyung Hee University) ;
  • Shin Dong-Ho (College of Environment and Applied Chemistry Chemical Engineering & Advanced Materials Engineering, Kyung Hee University)
  • 이용택 (경희대학교 환경.응용화학대학 화학공학 및 신소재공학) ;
  • 박중원 (경희대학교 환경.응용화학대학 화학공학 및 신소재공학) ;
  • 신동호 (경희대학교 환경.응용화학대학 화학공학 및 신소재공학)
  • Published : 2006.03.01

Abstract

This is the research about the concentration of trace citrus flavor components in water by pervaporation. We have investigated the permeation characteristics depending on the material and formation of membranes using four siloxane-based polymer composite membranes. We have also chosen the optimal membrane and investigated the permeation characteristics depending on the feed temperature, concentration and flow rate. And then it has been analyzed by using resistance-in series model. In the permeation experiment of citrus essence aroma model solution through the four siloxane-based polymer composite membranes, PVDF/POMS membranes have showed the best flavor flux and enrichment factor. As a result of the permeation experiment depending on the feed temperature, concentration and flow rate, we can find that as the feed temperature and concentration increase, the flavor flux increases while the enrichment factor decreases. And the flavor flux and enrichment factor increased as the flow rate increases.

본 연구는 투과증발법을 이용하여 수용액 중 미량의 감귤 향 성분을 농축하는 방법으로, 4종류의 실록산계 고분자 복합막을 이용하여 막 종류와 구조에 따른 투과 특성을 살펴보았다. 또한 최적의 막을 선정하여 공급액의 온도와 농도, 순환 유속에 따른 투과 특성을 살펴보고, 이를 resistance-in series model을 이용하여 해석하였다. 4종류의 실록산계 고분자 복합막을 통한 감귤 essence aroma 모델액의 투과 실험에서 지지층이 polyvinylidene fluoride (PVDF)이고 활성층이 polyoctylmethyl siloxane (POMS)인 막이 가장 높은 향 성분 플럭스와 농축계수 값을 나타내었으며, 공급액의 온도와 농도, 순환유속을 변화시키며 투과 실험을 하였다. 그 결과 공급액의 온도와 농도가 증가됨에 따라 향성분의 플럭스는 증가하고 농축계수 값은 감소하였으며 순환유속이 증가됨에 따라 향성분의 플럭스와 농축계수 값 모두 증가하였다.

Keywords

References

  1. http://www.jeju.go.kr, December 3 (2002)
  2. A. Cassano, E. Drioli, G. Galaverna, R. Marchelli, G. Di Silvestro, and P. Cagnasso, 'Clarification and concentration of citrus and carrot juices by integrated membrane processes', J. Food Eng., 57, 153 (2003) https://doi.org/10.1016/S0260-8774(02)00293-5
  3. J. F. Kefford and B. V. Chandler, 'The chemical constituents of citrus fruits', Academic press U.S.A. (1970)
  4. G. G. Alderman and E. H. Marth, 'Inhibition of growth and aflatoxin production of Aspergillus parasiticus by citrus oils', Z. Lebensm-Unters-Forsch., 160, 353 (1976) https://doi.org/10.1007/BF01106324
  5. K. W. Boddecker and G. Bengtson, 'Pervaporation of low volatility aromatics from water', J. Membr. Sci., 53, 143 (1990) https://doi.org/10.1016/0376-7388(90)80010-J
  6. H. J. Kim, Y. S. Song, and B. R. Min, 'The study on the recovery of volatile organic components by pervaporation', Membrane Journal, 9, 51 (1999)
  7. B. Smitha, D. Suhanya, S. Sridhar, and M. Ramakrishna, 'Separation of organic-organic mixtures by pervaporation-a review', J. Membr. Sci., 241, 1 (2004) https://doi.org/10.1016/j.memsci.2004.03.042
  8. B. Raghunath and S. T. Hwang, 'Effect of boundary layer mass transfer resistance in the pervaporation of dilute organics', J. Membr. Sci., 65, 147 (1992) https://doi.org/10.1016/0376-7388(92)87061-2
  9. X. Feng and R. Y. M. Huang, 'Concentration polarization in pervaporation separation processes', J. Membr. Sci., 92, 201 (1994) https://doi.org/10.1016/0376-7388(94)00056-5
  10. C. C. Pereira, A. C. Habert, R. Nobrega, and C. P. Borges, 'New insights in the removal of diluted volatile organic compounds from dilute aqueous solution by pervaporation process', J. Membr. Sci., 138, 227 (1998) https://doi.org/10.1016/S0376-7388(97)00225-1
  11. G. H. Koops, J. A. M. Nolten, M. H. V. Mulder, and C. A. Smolder, 'Selectivity as a function of membrane thickness: Gas separation and pervaporation', J. Appl. Polym. Sci., 53, 1639 (1994) https://doi.org/10.1002/app.1994.070531210
  12. R. Y. M Huang and V. J. C. Lin, 'Separation of liquid mixtures by using polymer membranes. I. Permeation of binary organic liquid mixtures through polyethylene', J. Appl. Polym. Sci., 12, 2615 (1968) https://doi.org/10.1002/app.1968.070121204
  13. P. Sampranpiboon, R. Jiraratananon, D. Uttapap, X. Feng, and R. Y. M Huang, 'Separation of aroma compounds from aqueous solutions by pervaporation using polyoctylmethyl siloxane (POMS) and polydimethyl siloxane (PDMS) membranes', J. Membr. Sci., 174, 55 (2000) https://doi.org/10.1016/S0376-7388(00)00365-3
  14. S. W. Cheon, T. I. Yun, H. S. Shin, B. A. Kim, R. I. Chung, and J. W. Rhim, 'Removal of volatile organic compounds from water using PU/PDMS-PTFE composite membrane by vapor permeation separation process', Membrane Journal, 15, 44 (2005)
  15. T. Lamer, M. S. Rohart, A. Voilley, and H. Baussart, 'Influence of sorption and diffusion of aroma compounds in silicone rubber on their extraction by pervaporation', J. Membr. Sci., 90, 251 (1994) https://doi.org/10.1016/0376-7388(94)80075-8
  16. C. K. Yeom, J. M. Dickson, and M. A. Brook, 'A characterization of PDMS pervaporation membrane for the removal of trace organic from water', Kor. J. Chem. Eng., 13, 482 (1996) https://doi.org/10.1007/BF02705998
  17. M. Marin, C. Hammami, and D. Beaumelle, 'Separation of volatile organic compounds from aqueous mixtures by pervaporation with multi- stage condensation', J. Food Eng., 28, 225 (1996) https://doi.org/10.1016/0260-8774(96)88325-7
  18. D. Beaumelle, M. Marin, and H. Gibert, 'Pervaporation of aroma compounds in water-ethanol mixtures: Experimental analysis of mass transfer', J. Food. Eng., 16, 293 (1992) https://doi.org/10.1016/0260-8774(92)90005-Q