DOI QR코드

DOI QR Code

Effect of Sample Preparations on Prediction of Chemical Composition for Corn Silage by Near Infrared Reflectance Spectroscopy

시료 전처리 방법이 근적외선분광법을 이용한 옥수수 사일리지의 화학적 조성분 평가에 미치는 영향

  • Published : 2006.03.01

Abstract

Near infrared reflectance spectroscopy (NIRS) has been increasingly used as a rapid, accurate method of evaluating some chemical compositions in forages. Analysis of forage quality by NIRS usually involves dry ground samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations and spectral math treatments on prediction ability of chemical composition for corn silage by NIRS. A population of 112 corn silage representing a wide range in chemical parameters were used in this investigation. Samples of com silage were scanned at 2nm intervals over the wavelength range 400-2500nm and the optical data recorded as log l/Reflectance(log l/R) and scanned in overt-dried grinding(ODG), liquid nitrogen grinding(LNG) or intact fresh(IF) condition. Samples were analysed for neutral detergent fiber(NDF), acid detergent fiber(ADF), acid detergent lignin(ADL), crude protein(CP) and crude ash content were expressed on a dry-matter(DM) basis. The spectral data were regressed against a range of chemical parameters using modified partial least squares(MPLS) multivariate analysis in conjunction with four spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation(SECV). The results of this study show that NIRS predicted the chemical parameters with very high degree of accuracy(the correlation coefficient of cross validation$(R^2cv)$ range from $0.70{\sim}0.95$) in ODG. The optimum equations were selected on the basis of minimizing the standard error of prediction(SEP). The Optimum sample preparation methods and spectral math treatment were for ADF, the ODG method using 2,10,5 math treatment(SEP = 0.99, $R^2v=0.93$), and for CP, the ODG method using 1,4,4 math treatment(SEP = 0.29. $R^2v=0.91$).

본 연구는 시료 및 스펙트럼의 전처리 방법이 근적외선 분광법을 이용한 옥수수 사일리지의 화학적 조성분의 예측능력에 미치는 영향을 평가하기 위해 수행되었다. 시료의 전처리 방법은 건조하여 분쇄하는 방법(Oven Dried Grinding), 액화 질소처리 후 분쇄하는 방법(Liquid Nitrogen Grinding) 그리고 생사일리지(Intact Fresh)처리로 하였으며 4개의 스펙트럼의 수처리(1,4,4, 2,6,4, 2,10,5) 방법을 이용하여 다변량회귀분석법인 변형부분최소자승회귀법(MPLS)을 통해 검량식을 작성하였다. 시료의 전처리 방법에 의해서 유도된 검량식의 예측 능력은 섬유소 성분(NDF, ADF)과 일반 조성분(CP, Ash) 모두에서 Oven dried grinding (ODG) > Liquid nitrogen grinding (LNG)>Intact fresh (IF) 처리 순으로 우수하였다. 또한 스펙트럼의 수처리 방법에 의한 결과는 시료의 전처리 방법에 따라 그 예측 능력이 다르게 나타났다. 옥수수 사일리지의 섬유소 함량을 예측하기 위한 최적의 시료 전처리 및 스펙트럼 수처리 방법은 NDF는 ODG 처리에 2,10,5 수처리 방법 $(R^2=0.86)$, ADF는 ODG 처리에 2,10,5 수처리 방법 $(R^2v=0.93)$이 가장 우수한 전처리 방법으로 나타났다. 조단백질 함량과 조회분 함량을 측정하기 위한 최적의 시료 전처리 및 스펙트럼 수처리 방법은 조단백질은 ODG 처리에 1,4,4 수처리 방법$(R^2v,=0.91)$, 조회분은 ODG 처리에 2,10,5 수처리 방법$(R^2v=0.89)$이 가장 우수한 전처리 방법으로 판단된다. 이상의 연구 결과를 종합해보면 근적외선 분광법을 이용한 사일리지의 화학적 조성분 함량 측정은 적은 오차 범위 내에서 신속하고 정확한 분석법이 될 수 있음을 확인 할 수 있었다. 비록 원물 생시료(IF)에 대한 직접적인 측정은 다소 예측 정확성이 떨어지지만 현장 적용성과 편리성을 높이기 위해서는 생시료의 측정시 오차를 줄일 수 있는 스펙트럼의 수처리 방법이나 산란보정 방법과 같은 데이터 처리기법에 대한 더 많은 연구가 앞으로 진행되어야 한다고 생각되어진다.

Keywords

References

  1. Adesogan, A.T., E. Owen, and D.I. Givens. 1998. Prediction of the in vivo digestibility of whole crop wheat from in vitro digestibility, chemical composition, in situ rumen degradability, in vitro gas production and near infrared reflectance spectroscopy. Anim. Feed Sci. Technol. 74:259-272 https://doi.org/10.1016/S0377-8401(98)00175-8
  2. AOAC. 1990. Official Methods of Analysis(15th ed). Association of Official Analytical Chemists, Washington, DC
  3. Baker, C.W., D.I. Givens, and E.R. Deaville. 1994. Prediction of organic matter digestibility in vivo of grass silage by near infrared reflectance spectroscopy: effect of calibration method, residual moisture and particle size. Anim. Feed Sci. Technol. 50: 17-26 https://doi.org/10.1016/0377-8401(94)90006-X
  4. Clark, D.H., H.F. Mayland, and R.C. Lamb. 1987. Mineral analysis of forages with near IR reflectance spectroscopy. Agron. J. 79:485-490 https://doi.org/10.2134/agronj1987.00021962007900030016x
  5. Cozzolino, D., A. Fassio, and A. Giminez. 2000. The use of near-infrared reflectance spectroscopy (NIRS) to predict the composition of whole maize plants. J. Sci. Food Agric. 81:142-146 https://doi.org/10.1002/1097-0010(20010101)81:1<142::AID-JSFA790>3.0.CO;2-I
  6. Daniel Alomar, Rita Fuchslocher and Sergio Stockebrand. 1999. Effects of oven-or freeze-drying on chemical composition and NIR spectra of pasture silage. Anim. Feed Sci. Technol. 80:309-319 https://doi.org/10.1016/S0377-8401(99)00053-X
  7. De Boever J.L., B.G. Cottyn, J.M. Vanacker and C.V. Boucque. 1995 The use of NIRS to predict the chemical composition and the energy value of compound feeds for cattle. Anim. Feed Sci. Technol. 51:243-253 https://doi.org/10.1016/0377-8401(94)00695-6
  8. Garcia-Cuidad, A., B. Garcia-Criado, M.E. Perez-Corona, B.R. Vazquez de Aldana, and A.N. Ruano-Ramos. 1993. Application of near-infrared reflectance spectroscopy to chemical analysis of heterogeneous and botanically complex grassland samples. J. Sci. Food Agric. 63:419-426 https://doi.org/10.1002/jsfa.2740630407
  9. Givens, D.I., J.L. De Boever, and E.R. Deaville. 1997. The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans. Nutr. Res. Rev. 10:83-114 https://doi.org/10.1079/NRR19970006
  10. Griggs, T.C., K.B. Lobos, and P.E. Kingery. 1999. Digestibility analysis of undried, unground, and dry ground herbage by near-infrared reflectance spectroscopy. Crop Sci. 39:1164-1170 https://doi.org/10.2135/cropsci1999.0011183X003900040036x
  11. Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analysis. Agric. Handb. 379. US Department of Agriculture, Washington, DC
  12. Hruschka, W.R. 1987. Data analysis: wavelength selection methods. In P. Williams and K. Norris (Eds.) Near-Infrared Technology in the Agricultural and Food Industries. St. Paul, MN: Am. Assoc. of Cereal Chemists Inc.. pp. 35-55
  13. Murray, I. 1990. Application of NIRS in agriculture. In: Iwamoto, M., Kawano, S. (Eds.), Proceedings of the Second International Near Infrared Spectroscopy Conference. Korin Publishing Co. Ltd., Tokyo, Japan, pp. 11-20
  14. Norris, K.H., R.F. Barnes, J.E. Moore, and J.S. Shenk. 1976. Predicting forage quality by near infrared reflectance spectroscopy. J. Anim. Sci. 43: 889-897 https://doi.org/10.2527/jas1976.434889x
  15. Park, R.S., R.E. Agnew, F.J. Gordon, and R.W.J. Steen. 1998. The use of near infrared reflectance spectroscopy(NIRS) on undried samples of grass silage to predict chemical composition and digestibility parameters. Anim. Feed Sci. Technol. 72:155-167 https://doi.org/10.1016/S0377-8401(97)00175-2
  16. Paul C., M. Rode and U. Feuerstein. 2000. From laboratory to harvester : forage analysis by NIRS diode array instrumentation. Grassland Sci. Europe 5:37 [Poster]
  17. Shenk, J.S. and M.O. Westerhaus. 1991a. Population definition, sample selection, and calibration procedures for near infrared reflectance spectroscopy. Crop Sci. 31:469-474 https://doi.org/10.2135/cropsci1991.0011183X003100020049x
  18. Shenk, J.S. and M.O. Westerhaus. 1991b. Population structuring of near infrared spectra and modified partial least squares regression. Crop Sci. 31:1548-1555 https://doi.org/10.2135/cropsci1991.0011183X003100060034x
  19. Valdes, E.V., R.B. Hunter, and L. Pinter. 1987. Determination of quality parameters by near infrared reflectance spectroscopy in whole-plant corn silage. Can. J. Plant Sci. 67:747-754 https://doi.org/10.4141/cjps87-102
  20. Van soest, P.J., J.B. Robertson, and B.A. Lewis. 1991. Symposium: Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J. Dairy Sci. 74:3583-3597 https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  21. Williams, P.C. 1987. Variables affecting nearinfrared reflectance spectroscopic analysis. In P. Williams and K. Norris (Eds.) Near-Infrared Technology in the Agricultural and Food Industries. St. Paul, MN: Am. Assoc. of Cereal Chemists Inc., pp. 143-167
  22. 이효원, 박형수, 김종덕. 2001. 사일리지용 옥수수의 근적외 분석에 관한 연구. 한국동물과학회지 43(6):981-988
  23. 조래광, 손미령, 권영길, 이경희, 박우철. 1998. 근적외 분광분석법을 응용한 사과의 비파괴 품질 측정 가능성 조사. 한국농화학회지 41(2):153-159

Cited by

  1. Prediction of Nutrient Composition and In-Vitro Dry Matter Digestibility of Corn Kernel Using Near Infrared Reflectance Spectroscopy vol.34, pp.4, 2014, https://doi.org/10.5333/KGFS.2014.34.4.277