Immune-Enhancing Alkali-Soluble Glucans Produced by Wild-Type and Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon (School of Life Science and Biotechnology, Korea University) ;
  • Lim Ki-Hong (School of Life Science and Biotechnology, Korea University) ;
  • Jang Se-Hwan (School of Life Science and Biotechnology, Korea University) ;
  • Yun Cheol-Won (School of Life Science and Biotechnology, Korea University) ;
  • Paik Hyun-Dong (Division of Animal Life Science, Kon-Kuk University) ;
  • Kim Seung-Wook (Department of Chemical and Biological Engineering, Korea University) ;
  • Kang Chang-Won (Division of Animal Life Science, Kon-Kuk University) ;
  • Chang Hyo-Ihl (School of Life Science and Biotechnology, Korea University)
  • Published : 2006.04.01

Abstract

The alkali-soluble glucan of the yeast cell wall contains $\beta-(1,3)-$ and (1,6)-D-linkages and is known to systemically enhance the immune system. In the previous study [6], in order to isolate cell wall mutants, a wild-type strain was mutagenized by exposure to ultraviolet light, and the mutants were then selected via treatment with laminarinase $(endo-\beta-(1,3)-D-glucanase)$. The mass of alkali- and water-soluble glucans produced by the mutant was measured to be 33.8 mg/g of the dry mass of the yeast cell. Our results showed that the mutants generated the amount of alkali-soluble glucan 10-fold higher than that generated by the wild-type. Structural analysis showed that the alkali-soluble glucan from the mutants was associated with a higher degree of $\beta-(1,6)-D-linkage$ than was observed in conjunction with the wild-type. Yeast cell wall $\beta-glucan$ was shown to interact with macrophages via receptors, thereby inducing the release of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide. Alkali-soluble $\beta-glucans$, both from water-soluble and water-insoluble glucan, exhibited a higher degree of macrophage activity with regard to both the secretion of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide and direct phagocytosis, than did the positive control ($1{\mu}g$ of lipopolysaccharide).

Keywords

References

  1. Chorvatovicova J. Sandula and G. Kogan. 1999. Protective effect of the yeast glucomannan against cyclophosphamideinduced mutagenicity. Mutat. Res. 444: 117-122 https://doi.org/10.1016/S1383-5718(99)00102-3
  2. Czop, J. K. and J. Kay. 1991. Isolation and characterization of glucan receptors on human mononuclear phagocytes. J. Exp. Med. 173: 1511-1518 https://doi.org/10.1084/jem.173.6.1511
  3. Ding, A. H. and D. J. Stuehr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141: 2407-2412
  4. Esteban, A. and J. Meseguer. 2004. Glucan receptor but not mannose receptor is involved in the phagocytosis of Saccharomyces cerevisiae by seabream (Sparus aurata L.) blood leucocytes. Fish Shellfish Immunol. 16: 447-451 https://doi.org/10.1016/j.fsi.2003.07.004
  5. Fleet, G. H. and D. J. Manners. 1976. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces. J. Gen. Microbiol. 94: 180-192 https://doi.org/10.1099/00221287-94-1-180
  6. Ha, C. H., Y. T. Kim, S. T. Lim, C. W. Kim, and H. I. Chang. 2002. Analysis of alkali-soluble glucan produced by Saccharomyces cerevisiae wild-type and mutants. Appl. Microbiol . Biotechnol. 58: 370-377 https://doi.org/10.1007/s002530100824
  7. Hong, F., J. Yan, D. J. Allendorf, J. T. Baran, G. R. Ostroff, and G. D. Ross. 2003. Beta-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res. 63: 9023-9031
  8. Hoffman, O. A. and A. H. Limper. 1993. Pneumocystis carinii stimulates tumor necrosis factor-alpha release from alveolar macrophages through a beta-glucan-mediated mechanism. J. Immunol. 150: 3932-3940
  9. Ito, H., S. Kuroda, H. Sakamoto, J. Kajihara, T. Kiyota, H. Hayashi, M. Kato, and M. Seko. 1986. Molecular cloning and expression in Escherichia coli of the cDNA coding for rabbit tumor necrosis factor. DNA 5: 149-156 https://doi.org/10.1089/dna.1986.5.149
  10. Jamas, S., C. K. Rha, and A. J. Sinskey. 1986. Morphology of yeast cell wall as affected by genetic manipulation of (1-6) glycosidic linkage. Biotech. Bioeng. 28: 769-784 https://doi.org/10.1002/bit.260280602
  11. Jamas, S., C. H. Osten, A. J. Sinskey, and C. K. Rha. 1990. Spectral analysis of glucan produced by wild-type and mutant Saccharomyces cerevisiae. Carbohydr. Polym. 13: 207-219 https://doi.org/10.1016/0144-8617(90)90084-6
  12. Jung, K., Y. Ha, S. K. Ha, D. U. Han, D. W. Kim, W. K. Moon, and C. Chae. 2004. Antiviral effect of Saccharomyces cerevisiae beta-glucan to swine influenza virus by increased production of interferon-gamma and nitric oxide. J. Vet. Med. B. Infect. Dis. Vet. Public Health 51: 72-76 https://doi.org/10.1111/j.1439-0450.2004.00732.x
  13. Kollar, R., B. B. Reinhold, E. Petrakova, H. J. Yeh, G. Ashwell, J. Drgonova, J. C. Kapteyn, F. M. Klis, and E. Cabib. 1997. Architecture of the yeast cell wall. Beta$(1{\rightarrow}6)$- glucan interconnects mannoprotein, beta$(1{\rightarrow})3$-glucan, and chitin. J. Biol. Chem. 272: 17762-17775 https://doi.org/10.1074/jbc.272.28.17762
  14. Kramer, S. M. and M. E. Carver. 1986. Serum-free in vitro bioassay for the detection of tumor necrosis factor. J. Immunol. Methods 93: 201-208 https://doi.org/10.1016/0022-1759(86)90189-4
  15. Kozel, T. R., A. Percival, and Q. Zhou. 2004. Biological activities of naturally occurring antibodies reactive with Candida albicans mannan. Infect. Immun. 72: 209-218 https://doi.org/10.1128/IAI.72.1.209-218.2004
  16. Kurihara, K., N. N. Miura, S. Horie, Y. Usui, Y. Adachi, T. Yadomae, and N. Ohno. 2003. Effect of CAWS, a mannoprotein-beta-glucan complex of Candida albicans, on leukocyte, endothelial cell, and platelet functions in vitro. Biol. Pharm. Bull. 26: 233-240 https://doi.org/10.1248/bpb.26.233
  17. Lee, J. N., I. H. Ji, G. E. Kim, H. N. Kim, J. W. Sohn, S. D. Kim, and C. W. Kim. 2001. Purification of soluble beta glucan with immune enhancing activity from the cell wall of yeast. Biosci. Biotechnol. Biochem. 65: 837-841 https://doi.org/10.1271/bbb.65.837
  18. Luzio, S. 1961. Identification of a reticuloendothelial stimulating agent in zymosan. Am. J. Physiol. 200: 297-303
  19. Ohmura, Y., I. Motokawa, K. Sukarai, and T. Ando. 2001. Protective effects of a protein-bound polysaccharide, PSK, on Candida albicans infection in mice via tumor necrosis factor induction. Int. Immunopharmacol. 1: 1797-1811 https://doi.org/10.1016/S1567-5769(01)00104-7
  20. Ohno, N., T. Hashimoto, Y. Adachi, and T. Yadomae. 1996. Effect of glucans on the nitric oxide synthesis by peritoneal macrophage in mice. Biol. Pharm. Bull. 19: 608-612 https://doi.org/10.1248/bpb.19.608
  21. Price, C. W., G. B. Fuson, and H. J. Phaff. 1978. Genome comparison in yeast systematics: Delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces, and Pichia. Microbiol. Rev. 42: 161-167
  22. Paulik, S., S. Svrcek, M. Huska, J. Mojzisova, A. Durove, and Z. Benisek. 1992. The effect of fungal and yeast glucan and levamisole on the level of the cellular immune response in vivo and leukocyte phagocytic activity in mice. Vet. Med. (Praha) 37: 675-681
  23. Ross, G. D., J. Yan, Y. Xia, and J. Vetvickova. 1999. Therapeutic intervention with complement and $\beta$-glucan in cancer. Immunopharmacology 42: 61-74 https://doi.org/10.1016/S0162-3109(99)00013-2
  24. Sakurai, T., N. Ohno, and T. Yadomae. 1999. Effects of fungal glucan and interferon on the secretory functions of murine alveolar macrophages. J. Leuk. Biol. 60: 118-124
  25. Soltys, J., P. Dubinsky, O. Tomasovicova, H. Auer, and H. Aspock. 1996. Effect of glucan immunomodulator on the immune response and larval burdens in mice with experimental toxocarosis. Appl. Parasitol. 37: 161-167
  26. Sakurai, T., N. Ohno, and T. Yadomae. 1994. Changes in immune mediators in mouse lung produced by administration of soluble $(1{\rightarrow}3)$-beta-D-glucan. Biol. Pharm. Bull. 17: 617-624 https://doi.org/10.1248/bpb.17.617
  27. Stephen, X. R. A. Ruckmana, Joseph, F. Borzellecac, Chad, and B. Sanduskyd. 2004. Toxicological and metabolic investigations of the safety of N-a-Lauroyl-l-arginine ethyl ester monohydrochloride (LAE). Food Chem. Toxicol. 42: 245-259 https://doi.org/10.1016/j.fct.2003.08.022
  28. Schnyder, J. and M. Baggiolini. 1978. Role of phagocytosis in the activation of macrophages. J. Exp. Med. 148: 1449- 1454 https://doi.org/10.1084/jem.148.6.1449
  29. Schnyder, J. and M. Baggiolini. 1978. Secretion of lysosomal hydrolases by stimulated and nonstimulated macrophages. J. Exp. Med. 148: 435-439 https://doi.org/10.1084/jem.148.2.435
  30. Schnyder, J. and M. Baggiolini. 1980. Induction of plasminogen activator secretion in macrophages by electrochemical stimulation of the hexose monophosphate shunt with methylene blue. Proc. Natl. Acad. Sci. USA 77: 414-419
  31. Tsikitis, V. L., J. E. Albina, and J. S. Reichner. 2004. Betaglucan affects leukocyte navigation in a complex chemotactic gradient. Surgery 136: 384-389 https://doi.org/10.1016/j.surg.2004.05.014
  32. Tsukada, C., H. Yokoyama, C. Miyaji, Y. Ishimoto, H. Kawamura, and T. Abo. 2003. Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of beta-glucan. Cell Immunol. 221: 1-5 https://doi.org/10.1016/S0008-8749(03)00061-3
  33. Vassallo, R. and A. H. Limper. 2000. Isolated Pneumocystis carinii cell wall glucan provokes lower respiratory tract inflammatory responses. J. Immunol. 164: 3755-3763 https://doi.org/10.4049/jimmunol.164.7.3755
  34. Van Berkel, M. A., R. C. Montijn, and F. M. Klis. 1994. Glycosylation of chimeric proteins in the cell wall of Saccharomyces cerevisiae. FEBS Lett. 349: 135-138 https://doi.org/10.1016/0014-5793(94)00631-8
  35. Williams, D. L., R. B. McNamee, E. L. Jones, H. E. Ensley, and I. W. Browder. 1992. Development of a water-soluble, sulfated $(1{\rightarrow}3)$-beta-D-glucan biological response modifier derived from Saccharomyces cerevisiae. Carbohydr. Res. 235: 247-257 https://doi.org/10.1016/0008-6215(92)80093-G