Modulatory Activity of Bifidobacterium sp. BGN4 Cell Fractions on Immune Cells

  • Kim Nam-Ju (Department of Food and Nutrition, Seoul National University) ;
  • Ji Geun-Eog (Department of Food and Nutrition, Seoul National University, Research Center, Bifido Inc.)
  • Published : 2006.04.01

Abstract

Bifidobacteria has been suggested to exert health promoting effects on the host by maintaining microbial flora and modulating immune functions in the human intestine. We assessed modulatory effects of the different cell fractions of Bifidobacterium sp. BGN4 on macrophage cells and other immune cells from the spleen and Peyer's patches (PP) of mouse. Cell free extracts (CFE) of the BGN4 fractions induced well-developed morphological changes in the macrophages and increased the phagocytic activity more effectively than other fractions in the mouse peritoneal cells. Nitric oxide (NO) production was significantly reduced by both the cell walls (CW) and CFE in the cultured cells from the spleen and PP. The production of interleukin-6 (IL-6) and interleukin-10 (IL-10) was eminent in the spleen cells treated with experimental BGN4 cell fractions. However, in the PP cells, IL-6 was slightly decreased by the treatment with the whole cell (WC) and CW, whereas IL-10 was significantly increased by the treatment with the CW and CFE. These results suggest that different types of bifidobacterial cell fractions may have differential immunomodulatory activities depending on their location within the host immune system.

Keywords

References

  1. Bezkorovany, A. 1989. Ecology of bifidobacteria, pp. 29- 72. In Bezkorovainy, A. and R. Miller-Catchpole. (eds.), Biochemistry and Physiology of Bifidobacteria. CRC press, Florida, U.S.A
  2. Dong, W., J. I. Azcona-Olivera, K. H. Brooks, J. E. Linz, and J. J. Pestka. 1994. Elevated gene expression and production of interleukins 2, 4, 5 and 6 during exposure to vomitoxin (deoxynivalenol) and cycloheximide in the EL-4 thymoma. Toxicol. Appl. Pharmacol. 127: 282-290 https://doi.org/10.1006/taap.1994.1163
  3. Fukuo, K., T. Inoue, S. Morimoto, T. Nakahashi, O. Yasuda, S. Kitano, R. Sasada, and T. Ogihara. 1995. Nitric oxide mediates cytotoxicity and basic fibroblast growth factor release in cultured vascular smooth muscle cells. A possible mechanism of neo vascularization in atherosclerotic plaques. J. Clin. Invest. 95: 669-676 https://doi.org/10.1172/JCI117712
  4. Fuseler, J. M., E. M. Conner, J. M. Davis, R. E. Wolf, and M. B. Grisham. 1997. Cytokine and nitric oxide production in the acute phase of bacterial cell wall-induced arthritis. Inflammation 21: 113-131 https://doi.org/10.1023/A:1027351111240
  5. Hatcher, G. E. and R. S. Lambrecht. 1993. Augmentation of macrophage phagocytic activity by cell free extracts of selected lactic acid-producing bacteria. J. Dairy Sci. 76: 2485-2492 https://doi.org/10.3168/jds.S0022-0302(93)77583-9
  6. Hosono, A., J. Lee, A. Ametani, M. Natsume, M. Hirayama, T. Adachi, and S. Kaminogawa. 1997. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M 101-4. Biosci. Biotech. Biochem. 61: 312-316 https://doi.org/10.1271/bbb.61.312
  7. Huang, F. P., N. Platt, M. Wykes, J. R. Major, T. J. Powell, C. D. Jenkins, and G. G. MacPherson. 2000. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191: 435-443 https://doi.org/10.1084/jem.191.3.435
  8. Hussain, N., V. Jaitley, and A. T. Florence. 2001. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev. 50: 107-142 https://doi.org/10.1016/S0169-409X(01)00152-1
  9. Kado-Oka, Y., S. Fujiwara, and T. Hirota. 1991. Effects of bifidobacteria cells on mitogenic response of splenocytes and several functions of phagocytes. Milchwissenshaft 46: 626-630
  10. Kim, H.Y., J. H. Yang, and G. E. Ji. 2005. Effect of bifidobacteria on production of allergy-related cytokines from mouse spleen cells. J. Microbiol. Biotechnol. 15: 265- 268 https://doi.org/10.1159/000090402
  11. Kim, I. H., M. S. Park, and G. E. Ji. 2003. Characterization of adhesion of Bifidobacterium sp. BGN4 to human enterocytelike Caco-2 cells. J. Microbiol. Biotechnol. 13: 276-281
  12. Kim, Y. M., T. R. Billiar, and J. R. Lancaster Jr. 1996. Reactive oxygen and nitrogen metabolites and related enzymes, pp. 171.1-171.10. In L. A. Hezenberg, D. M. Weir, L. A. Herzenberg, and C. Blackwell (eds.), Weir's Handbook of Experimental Immunology, Vol. 4. The Integrated Immune system. Blackwell Science, Cambridge, U.S.A
  13. Lee B. H. and G. E. Ji. 2005. Effect of Bifidobacterium cell fractions on IL-6 production in RAW 264.7 macrophage cells. J. Microbiol. Biotechnol. 15: 740-744
  14. Lee, J., A. Ametani, A. Enomoto, Y. Sato, H. Motoshima, F. Ike, and S. Kaminogawa. 1993. Screening for the immunopotentiating activity of food microorganisms and enhancement of the immune response by Bifidobacterium adolescentis M101-4. Biosci. Biotech. Biochem. 57: 2127- 2132 https://doi.org/10.1271/bbb.57.2127
  15. Lee, M. J., Z. Zang, E. Y. Choi, H. K. Shin, and G. E. Ji. 2002. Cytoskeleton reorganization and cytokine production of macrophages by bifidobacterial cells and cell-free extracts. J. Microbiol. Biotechnol. 12: 398-405
  16. Lorsbach, R. B., W. J. Murphy, C. J. Lowenstein, S. H. Synder, and S. W. Russell. 1993. Expression of the nitric oxide synthase gene in mouse macrophage activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J. Biol. Chem. 268: 1908-1913
  17. Makala, L. H. C., T. Kamada, Y. Nagasawa, I. Igarashi, K. Fujisaki, N. Suzuki, T. Mikami, K. Haverson, M. Bailey, C. Stokes, and P. Bland. 2001. Ontogeny of pig discrete Peyer's patches: Expression of surface antigens. J. Vet. Med. Sci. 63: 625-636 https://doi.org/10.1292/jvms.63.625
  18. Makala, L. H. C., Y. Nishikawa, T. Kamada, H. Suzuki, X. Xuan, I. Igarashi, and H. Nagasawa. 2001. Comparison of the accessory activity of murine peritoneal cavity macrophage derived dendritic cells and peritoneal cavity macrophage in a mixed lymphocyte reaction. J. Vet. Med. Sci. 63: 1271- 1277 https://doi.org/10.1292/jvms.63.1271
  19. Marteau, P., P. Seksik, P. Lepage, and J. Dore. 2004. Cellular and physiological effects of probiotics and prebiotics. Mini Rev. Med. Chem. 4: 889-896 https://doi.org/10.2174/1389557043403369
  20. Okitsu-Negishi, S., I. Nakano, K. Suzuki, S. Hashira, T. Abe, and K. Yoshino. 1996. The induction of cardioangitis by Lactobacillus casei cell wall in mice. I. The cytokine production from murine macrophages by Lactobacillus casei cell wall extract. Clin. Immunol. Immunopathol. 78: 30-40 https://doi.org/10.1006/clin.1996.0005
  21. Park, S. Y., G. E. Ji, Y. T. Ko, H. K. Jung, Z. Ustunol, and J. J. Pestka. 1999. Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commensal isolates of Bifidobacterium. Int. J. Food Microbiol. 46: 231-241 https://doi.org/10.1016/S0168-1605(98)00197-4
  22. Rescigno, M., M. Urbano, B. Valzasina, M. Francolini, G. Rotta, R. Bonasio, F. Granucci, J. P. Kraehenbuhl, and P. Ricciardi-Castagnoli. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2: 361-367 https://doi.org/10.1038/86373
  23. Sekine, K., T. Kasashima, and Y. Hashimoto. 1994. Comparison of the TNF-$\alpha$ levels induced by human-derived Bifidobacterium longum and rat-derived Bifidobacterium animalis in mouse peritoneal cells. Bifidobact. Microfl. 13: 79-89 https://doi.org/10.12938/bifidus1982.13.2_79
  24. Shortt, C. 1999. The probiotic century: Historical and current perspectives. Trends Food Sci. Tech. 10: 411-417 https://doi.org/10.1016/S0924-2244(00)00035-2
  25. Smith, D. W. and C. Nagler-Anderson. 2005. Preventing intolerance: The induction of nonresponsiveness to dietary and microbial antigens in the intestinal mucosa. J. Immunol. 174: 3851-3857 https://doi.org/10.4049/jimmunol.174.7.3851
  26. Southey, A., S. Tanaka, T. Murakami, H. Miyoshi, T. Ishizuka, M. Sugiura, K. Kawashima, and T. Sugita. 1997. Pathophysiological role of nitric oxide in rat experimental colitis. Int. J. Immunopharmacol. 19: 669-676 https://doi.org/10.1016/S0192-0561(97)00107-0
  27. Strober, W. 1991. Trypan blue test for cell viability, pp. A.3.3-A3.4. In Coligan, J. E., A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, and W. Strober (eds.), Current Protocols in Immunology. Greene Pub. Associates and Wiley- Interscience, New York, U.S.A
  28. Synder, S. H. and D. S. Bredt. 1992. Biological roles of nitric oxide. Sci. Am. 266: 68-77
  29. Szabo, I., L. Guan, and T. J. Rogers. 1995. Modulation of macrophage phagocytic activity by cell wall components of Candida albicans. Cell. Immunol. 164: 182-188 https://doi.org/10.1006/cimm.1995.1160
  30. Teitelbaum, J. E. and W. A. Walker. 2002. Nutritional impact of pre- and probiotics as protective gastrointestinal organisms. Annu. Rev. Nutr. 22: 107-138 https://doi.org/10.1146/annurev.nutr.22.110901.145412
  31. Underhill, D. M. and A. Ozinsky. 2002. Phagocytosis of microbes: Complexity in action. Annu. Rev. Immunol. 20: 825-852 https://doi.org/10.1146/annurev.immunol.20.103001.114744
  32. Vinderola, C. G., M. Medici, and G. Perdigón. 2004. Relationship between interaction sites in the gut, hydrophobicity, mucosal immunomodulating capacities and cell wall protein profiles in indigenous and exogenous bacteria. J. Appl. Microbiol. 96: 230-243 https://doi.org/10.1046/j.1365-2672.2004.02158.x