Purification and Characterization of Two Endoxylanases from an Alkaliphilic Bacillus halodurans C-1

  • Tachaapaikoon Chakrit (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Lee Yun-Sik (Department of Surgery, University of Pennsylvania, School of Medicine, Philadelphia) ;
  • Rantanakhanokchai Khanok (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Pinitglang Surapong (Department of Food Science and Technology, University of the Thai, Chamber of Commerce) ;
  • Kyu Khin Lay (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Rho Min-Suk (Department of Pathology, Seoul National University, College of Medicine) ;
  • Lee Si-Kyung (Department of Applied Biology and Chemistry, Konkuk University)
  • Published : 2006.04.01

Abstract

Two endoxylanases from an alkaliphilic bacterium, Bacillus halodurans C-1, were purified 3.8- and 7.9- fold with specific activities of 9.4 and 19.8U/mg protein, respectively. The molecular masses of both purified enzymes were 23 and 47 kDa, respectively, and 23 kDa xylanase I (Xyl I) exhibited an optimum pH at 7.0, whereas 47 kDa xylanase II (Xyl II) showed a broad pH range of 5.0 to 9.0. The temperature optima of both xylanases were $60^{\circ}C\;and\;70^{\circ}C$, respectively. Both were stable in the pH range of 6.0 to 9.0 and 5.0 to 10.0, respectively, and they were stable up to $60^{\circ}C\;and\;70^{\circ}C$, respectively. The $K_m\;and\;V_{max}$ of Xyl I were 4.33mg/ml and $63.5{\mu}mol/min/mg$, respectively, whereas Xyl II had a $K_m$ value of 0.30 mg/ml and $V_{max}$ of $210{\mu}mol/min/mg$. Both xylanases hydrolyzed xylans from birchwood, oat spelt, and larchwood. However, they showed different modes of action; a series of xylooligosaccharides larger than xylotriose were released as the major products by Xyl I, whereas xylobiose and xylotriose were the main products by Xyl II. The maximum synergistic action of the two enzymes on hydrolysis of xylan was 2.16 with the ratio of Xyl I to Xyl II at 1:9.

Keywords

References

  1. Bataillon, M., A. P. Nunes-Cardinali, N. Castillon, and F. Duchiron. 2000. Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme Microb. Technol. 26: 187-192 https://doi.org/10.1016/S0141-0229(99)00143-X
  2. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications. Appl. Microbiol. Biotechnol. 56: 326-338 https://doi.org/10.1007/s002530100704
  3. Berg, B., B. V. Hofstan, and B. Petterson. 1972. Growth and cellulase formation by Celluvibrio folvus. J. Appl. Bacteriol. 35: 201-214 https://doi.org/10.1111/j.1365-2672.1972.tb03691.x
  4. Bergquist, P. L., M. D. Gibbs, D. D. Morris, D. R. Thompson, A. M. Uhl, and R. M. Daniel. 2001. Hyperthermophilic xylanases. Methods Enzymol. 330: 301-319 https://doi.org/10.1016/S0076-6879(01)30384-1
  5. Coughlan, M. P. and G. P. Hazlewood. 1993. $\beta$-1,4-D-Xylandegrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259-289
  6. Garrity, G. 2001. Endospore-forming gram-positive rods and cocci, pp. 1104-1207. In Claus, D. and Berkeley R. C. W. (eds.). Bergey's Manual of Systematic Bacteriology. Vol. 2. Springer
  7. Ghangas, G. S., Y. J. Hu, and D. B. Wilson. 1989. Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J. Bacteriol. 171: 2963-2969 https://doi.org/10.1128/jb.171.6.2963-2969.1989
  8. Heo, S. Y., J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and betaxylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
  9. Honda, H., T. Kudo, Y. Ikura, and K. Horikoshi . 1985. Two types of xylanases of alkalophilic Bacillus sp. No. C-125. Can. J. Microbiol. 31: 538-542 https://doi.org/10.1139/m85-100
  10. Kang, S. C., H. J. Kim, S. W. Nam, and D. K. Oh. 2002. Surface immobilization on silica of endoxylanase produced from recombinant Bacillus subtilis. J. Microbiol. Biotechnol. 12: 766-772
  11. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 13: 1-8
  12. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  13. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  14. Lee, Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG- 22. J. Microbiol. Biotechnol. 14: 1014-1021
  15. Lineweaver, H. and D. Burke. 1934. Determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666 https://doi.org/10.1021/ja01318a036
  16. Nakamura, S., K. Wakabayashi, R. Nakai, R. Aono, and K. Horikoshi. 1993. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl. Environ. Microbiol. 59: 2311-2316
  17. Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829- 835
  18. Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697
  19. Somogyi, M. 1952. Notes in sugar determination. J. Biol. Chem. 195: 265-275
  20. Song, H. H., M. J. Gill, and C. Lee. 2005. Mass-spectral identification of an extracellular protease from Bacillus subtilis KCCM 10257, a producer of antibacterial peptide subtilein. J. Microbiol. Biotechnol. 15: 1054-1059
  21. Subramaniyan, S. and P. Prema. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7 https://doi.org/10.1111/j.1574-6968.2000.tb08925.x
  22. Sunna, A., J. Puls, and G. Antranikian. 1996. Purification and characterization of two thermostable endo-1,4-$\beta$-D-xylanases from Thermotoga thermarum. Biotechnol. Appl. Biochem. 24: 177-185
  23. Techkarnjanaruk, S., S. Pongpattanakitshote, and A. E. Goodman. 1997. Use of a promoterless lacZ gene insertion to investigate chitinase gene expression in the marine bacterium Pseudoalteromonas sp. strain S9. Appl. Environ. Microbiol. 63: 2989-2996
  24. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganisms: Function and applications. Microbiol. Rev. 52: 305-317