DOI QR코드

DOI QR Code

Characterization of the LSGM-Based Electrolyte-Supported SOFCs

LSGM계 전해질 지지형 고체산화물 연료전지의 특성평가

  • Song, Eun-Hwa (Materials Division, Korea Institute of Science and Technology) ;
  • Kim, Kwang-Nyeon (Materials Division, Korea Institute of Science and Technology) ;
  • Chung, Tai-Joo (Department of Ceramics Engineering, Andong National University) ;
  • Son, Ji-Won (Materials Division, Korea Institute of Science and Technology) ;
  • Kim, Joo-Sun (Materials Division, Korea Institute of Science and Technology) ;
  • Lee, Hae-Weon (Materials Division, Korea Institute of Science and Technology) ;
  • Kim, Byung-Kook (Materials Division, Korea Institute of Science and Technology) ;
  • Lee, Jong-Ho (Materials Division, Korea Institute of Science and Technology)
  • 송은화 (한국과학기술연구원 재료연구부) ;
  • 김광년 (한국과학기술연구원 재료연구부) ;
  • 정태주 (안동대학교 재료공학과) ;
  • 손지원 (한국과학기술연구원 재료연구부) ;
  • 김주선 (한국과학기술연구원 재료연구부) ;
  • 이해원 (한국과학기술연구원 재료연구부) ;
  • 김병국 (한국과학기술연구원 재료연구부) ;
  • 이종호 (한국과학기술연구원 재료연구부)
  • Published : 2006.05.01

Abstract

LSGM(($La_xSr_{1-x})(Ga_yMg_{1-y})O_3$) electrolyte is known to show very serious interfacial reaction with other unit cell components, especially with an anode. Such an interfacial reaction induced the phase instability of constituent component and deterioration of the unit cell performance, which become the most challenging issues in LSGM-based SOFCs. In this study, we fabricated LSGM($La_{0.8}Sr_{0.2}Ga_{0.83}Mg_{0.17}O_x$) electrolyte supported-type cell in order to avoid such interfacial problem by lowering the heat-treatment temperature of the electrode fabrication. According to the microstructural and phase analysis, there was no serious interfacial reaction at both electrolyte/anode and electrolyte/cathode interfaces. Moreover, from the electrochemical characterization of the unit cell performance, there was no distinct deterioration of the open cell voltage as well as an internal cell resistance. These results demonstrate the most critical point to be concerned in LSGM-based SOFC is either to find a proper electrode material which will not give any interfacial reaction with LSGM electrolyte or to properly adjust the processing variables for unit cell fabrication, to reduce the interfacial reaction.

Keywords

References

  1. N. Q. Minh and T. Takahashi, 'Science and Technology of Ceramic Full Cells'; pp. 92-95, Elsevier Science, Amsterdam, 1996
  2. N. Q. Minh, 'Ceramic Fuel Cell,' J. Am. Ceram. Soc., 76 [3] 563-88 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  3. N. Q. Minh, 'High-Temperature Fuel Cell. Part II: The Solid Oxide Fuel Cell,' Chemtech., 21 120-26 (1991)
  4. T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura, and T. Inagaki, 'Performance of Intermediate Temperature Solid Oxide Fuel Cells with $La(Sr)Ga(Mg)O_3$ Electrolyte Film,' J. Power Sources, 106 142-45 (2002) https://doi.org/10.1016/S0378-7753(01)01026-6
  5. T. Ishihara, H. Matsuda, and Y. Takita, 'Doped $LaGaO_3$ Perovskite Type Oxide as a New Oxide Ionic Conductor,' J. Am. Chem. Soc., 116 3801-03 (1994) https://doi.org/10.1021/ja00088a016
  6. Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, and N. Imanishai, 'Electrical Conductivity of the $ZrO_2{\cdot}Ln_2O_3$ (Ln=lanthanides) System,' Solid State Ionics, 121 [1-4] 133-39 (1999) https://doi.org/10.1016/S0167-2738(98)00295-1
  7. K. Huang and J. B. Goodenough, 'A Solid Oxide Fuel Cell Based on Sr- and Mg-Doped LaGaO3 Electrolyte: The Role of a Rare-Earth Oxide Buffer,' J. Alloys and Compounds, 303-304 454-64 (2000) https://doi.org/10.1016/S0925-8388(00)00590-9
  8. P. Maiewski, M. Rozumek, C. A. Tas, and F. Aldinger, 'Processing of (La,Sr)(Ga,Mg).$O_3$ Solid Electrolyte,' J. Electroceramics, 8 65-73 (2002) https://doi.org/10.1023/A:1015507520661
  9. M. J. Lee, S. S. Park, and B. H. Choi, 'Variations in the Properties of LSGM System Electrolyte with Sr and Mg Addition and Sintering Conditions(in Korean),' J. Kor. Ceram. Soc., 39 [4] 352-58 (2002) https://doi.org/10.4191/KCERS.2002.39.4.352
  10. R. Polini, A. Pamio, and E. Traversa, 'Effect of Synthetic Route on Sintering Behavior, Phase Purity and Conductivity of Sr- and Mg-Doped $LaGaO_3$ Perovskites,' J. Eur. Ceram. Soc., 24 [6] 1365-70 (2004) https://doi.org/10.1016/S0955-2219(03)00592-2
  11. T. Ishihara, H. Matsuda, M. A. bin Bustam, and Y. Takita, 'Oxide Ion Conductivity in Doped Ga Based Perovskite Type Oxide,' Solid State Ionics, 86-88 197-201 (1996) https://doi.org/10.1016/0167-2738(96)00122-1
  12. J. H. Kim and H. I. Yoo, 'Partial Electronic Conductivity and Electrolytic Domain of $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\delta}$,' Solid State Ionics, 140 105-13 (2001) https://doi.org/10.1016/S0167-2738(01)00687-7
  13. F. Zheng, R. K. Bordia, and L. R. Pederson, 'Phase Constitution in Sr and Mg Doped $LaGaO_3$ System,' Mater. Res. Bull., 39 141-55 (2004) https://doi.org/10.1016/S0025-5408(03)00140-5
  14. L. Cong, T. He, Y. Ji, P. Guan, Y. Huang, and W. Su, 'Synthesis and Characterization of IT-Electrolyte with Perovskite Structure $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-\delta}$ by Glycine-Nitrate Combustion Method,' J. Alloys and Compounds, 348 325-31(2003) https://doi.org/10.1016/S0925-8388(02)00859-9
  15. X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H. Yoshida, T. Inagaki, and K. Miura, 'Interface Reactions in the NiO-SDC-LSGM System,' Solid State Ionics, 133 [3-4] 153-60 (2000) https://doi.org/10.1016/S0167-2738(00)00744-X
  16. M. Hrovat, A. Ahmad-Khanlou, Z. Samarzija, and J. Hole, 'Interactions bewteen Lanthanum Gallate Based Solid Electrolyte and Ceria,' Mater. Res. Bull., 34 2027-34 (1999) https://doi.org/10.1016/S0025-5408(99)00220-2
  17. N. Maffei and G. de Silveira, 'Interfacial Layers in Tape Cast Anode-Supported Dopde Lanthanum Gallate SOFC Elements,' Solid State Ionics, 159 209-16 (2003) https://doi.org/10.1016/S0167-2738(02)00695-1
  18. E. Djurado and M. Labeau, 'Second Phases in Doped Lanthanum Gallate Perovskites,' J. Eur. Ceram. Soc., 18 1397-404 (1998) https://doi.org/10.1016/S0955-2219(98)00016-8
  19. A. Naoumidis, A. Ahmad-Khanlou, Z. Samarzija, and D. Kolar, 'Chemical Interaction and Diffusion on Interface Cathode/Electrolyte of SOFC,' J. Anal. Chem., 365 277-81 (1999) https://doi.org/10.1007/s002160051488
  20. P. Huang, A. Horky, and A. Petric, "'nterfacial Reaction between Nickel Oxide and Lanthanum Gallate During Sntering and Its Effect on Conductivity,' J. Am. Ceram. Soc., 82 [9] 2402-06 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02096.x
  21. K.-N. Kim, J. Moom, H. Kim, J.-W. Son, J. Kim, H.-W. Lee, J.-H. Lee, and B.-K. Kim, 'Interfacial Stability between anode and Electrolyte of LSGM-Based SOFCs(in Korean),' J. Kor. Ceram. Soc., 42 [7] 509-15 (2005) https://doi.org/10.4191/KCERS.2005.42.7.509
  22. K.-N. Kim, J. Moom, H. Kim, J.-W. Son, J. Kim, H.-W. Lee, J.-H. Lee, and B.-K. Kim, 'Effect of Interfacial Layer on the Electrochemical Performance of LSGM-Based SOFCs(in Korean),' J. Kor. Ceram. Soc., 42 [10] 665-71 (2005) https://doi.org/10.4191/KCERS.2005.42.10.665
  23. M. J. Lee, J. H. Nam, and B. H. Choi, 'Cell Properties for SOFC Using Synthesized Power of Electrolyte LSGM System and Cathode LSM System(in Korean),' J. Kor. Ceram. Soc., 39 [4] 359-66 (2002) https://doi.org/10.4191/KCERS.2002.39.4.359
  24. J. H. Wan, J.-Q. Yan, and J. B. Goodenough, 'LSGM-Based Solid Oxide Fuel Cell with 1.4 $\Omega/cm^{2}$ Power Density and 30 Day Long-Term Stability,' J. Electrochemical Soc., 152 [8] A1511-15 (2005) https://doi.org/10.1149/1.1943587
  25. T. Ishihara, H. Minami, H. Matsuda, and Y. Takita, 'Application of the New Oxide Ionic Conductor, $LaGaO_3$, to the Solid Electrolyte of Fuel Cells,' Solid Oxide Fuel Cells IV, USA, [2001-16] 344-52 (1995)
  26. W. Gong, S. Gopalan, and U. B. Pal, 'Performance of Intermediate Temperature (600-800$^{\circ}$C) Solid Oxide Fuel Cell Based on Sr and Mg Doped Lanthanum-Gallate Electrolyte,' J. Power Sources (in press)

Cited by

  1. Solid Oxide Fuel Cells vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.479