DOI QR코드

DOI QR Code

A New Mechanism for Enhanced Beat Transport of Nanofluid

나노유체의 열전도도 향상에 관한 새로운 메커니즘

  • 이동근 (부산대학교 기계공학부) ;
  • 김재원 (부산대학교 대학원 기계공학과)
  • Published : 2006.06.01

Abstract

Although various conjectures have been proposed to explain abnormal increase in thermal conductivity of nanofluids, the detailed mechanism could not be understood and explained yet. The main reason is primarily due to the lack of knowledge on the most fundamental factor governing the mechanisms such as Brownian motion, liquid layering, phonon transport, surface chemical effects and agglomeration. By applying surface complexation model for the measurement data of hydrodynamic size, zeta potential, and thermal conductivity, we have shown that sulfate charge state is mainly responsible for the increase in the present condition and may be the factor incorporating all the mechanisms as well. Moreover, we propose a new model including concepts of fractal and interfacial layer. The properties such as thickness and thermal conductivity of the layer are estimated from the surface charge states and the concept of electrical double layer. With this, we could demonstrate the pH dependences of the layer properties and eventually of the effective thermal conductivity of the nanofluid.

Keywords

References

  1. Choi, S.U.S., 2002, ASME FED, Vol. 231, p. 99
  2. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., and Grulke, E.A., 2001, Appl. Phys. Lett., Vol. 79, p. 2252 https://doi.org/10.1063/1.1408272
  3. Das, S.K., Putra, N., Thiesen, P. and Roetzel, W., 2003, ASME Trans. J. Heat Trans. Vol. 125, pp. 567-574 https://doi.org/10.1115/1.1571080
  4. Mursshed, S.M.S., Leong, K.C. and Yang, C., 2005, Int. J. Thermo. Sci., Vol. 44, pp. 367-373 https://doi.org/10.1016/j.ijthermalsci.2004.12.005
  5. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W. and Thompson, L.J., 2001, Appl. Phys. Lett., Vol. 78, pp. 718-720 https://doi.org/10.1063/1.1341218
  6. Xuan, Y. and Li, Q., 2000, Int. J. Heat Fluid Fl., Vol. 21, pp. 58-64 https://doi.org/10.1016/S0142-727X(99)00067-3
  7. Patel, H.E., Das, S.K., Sundararajan, T., Nair, A.S., George, B. and Pradeep, T., 2003, Appl. Phys. Lett., Vol. 83, pp. 2931-2934 https://doi.org/10.1063/1.1602578
  8. Xie, H., Wang, J., Xi, T. and Liu, Y., 2002, Int. J. Thermophys., Vol. 23, pp. 571-580 https://doi.org/10.1023/A:1015121805842
  9. Lee, S., Choi, S. U. S., Li, S. and Eastman, J. A., 1999, ASME Trans. J. Heat. Trans., Vol. 121, pp. 280-289 https://doi.org/10.1115/1.2825978
  10. Xie, H., Lee, H., Youn, W. and Choi, M., 2003, J. Appl. Phys., Vol. 94, pp. 4967-4971
  11. Xuan, Y., Li, Q. and Hu, W., 2003, AICHE J, Vol. 49, pp.1038-1043 https://doi.org/10.1002/aic.690490420
  12. Wang, B.-X., Zhou, L.-P. and Peng, X.-F., 2003, Int. J. Heat Mass Trans., Vol. 46, pp. 2665-2672 https://doi.org/10.1016/S0017-9310(03)00016-4
  13. Keblinski, P., Phillpot, S. R.,Choi, S. U. S. and Eastman, J. A., 2002, Int. J. Heat Mass Trans., Vol. 45, . pp. 855-863 https://doi.org/10.1016/S0017-9310(01)00175-2
  14. Jang, S. P. and Choi, S.U.S., 2004, Appl. Phys. Lett., Vol. 84, pp. 4316-4318 https://doi.org/10.1063/1.1756684
  15. Kumar, D. H., Patel, H. E., Kumar, V. ,R. R., Sundararajan, T., Pradeep, T. and Das, S. K., 2004, Phys. Rev. Lett., Vol. 93, p. 144-301
  16. Xue, Q. and Xu, W.-M., 2005, Materials Chern. Phys., Vol. 90, pp. 298-301 https://doi.org/10.1016/j.matchemphys.2004.05.029
  17. Yu, W. and Choi, S.U.S., 2003, J. Nanoparticle Res., Vol. 5, pp. 167-171 https://doi.org/10.1023/A:1024438603801
  18. Hunter, R. J., 1987, Foundations of Colloid Science, 1st ed.; Clarendon Press: Oxford
  19. Kallay, N. and Zalac, S., 2001, Croat. Chem. Acta, Vol. 74, pp. 479-497
  20. Nagasaka, Y. and Nagashima, A., 1981, J. Phys. E: Sci. Instrum., Vol. 14, pp. 1435-1440 https://doi.org/10.1088/0022-3735/14/12/020
  21. Parks, G.A., 1965, Chem. Rev., Vol. 65, pp. 177-198 https://doi.org/10.1021/cr60234a002
  22. Bergstrom, L., 1997, Adv. Colloid Interfac., Vol. 70, pp. 125-169 https://doi.org/10.1016/S0001-8686(97)00003-1
  23. Xue, L., Keblinski, P., Philpot, S.R., Choi, S.U.S. and Eastman, J.A., 2003, J. Chem. Phys., Vol. 118, pp. 337-339 https://doi.org/10.1063/1.1525806
  24. Koylu, U.O., Faeth, G.M., Farias, T.L. and Carvalho, M.G., 1995, Comb. Flame, Vol. 100, pp. 621-533 https://doi.org/10.1016/0010-2180(94)00147-K
  25. Lee, D. and Choi, M., 2002, J. Aerosol Sci., Vol. 33, pp. 1-16 https://doi.org/10.1016/S0021-8502(01)00155-0
  26. Kim, A.S. and Yuan, R., 2005, J. Colloid Interface Sci., Vol. 285, pp. 627-633 https://doi.org/10.1016/j.jcis.2004.12.009
  27. Xue, Q.-Z., 2003, Phys. Lett. A, Vol. 307, pp. 313-317 https://doi.org/10.1016/S0375-9601(02)01728-0