Evaluation of friction of ceramic brackets in various bracket-wire combinations

브라켓 각도 변화에 따른 세라믹 브라켓의 마찰력 측정

  • Cha, Jung-Yul (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Kim, Kyung-Suk (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Kim, Dong-Choon (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Hwang, Chung-Ju (Department of Orthodontics, College of Dentistry, Yonsei University, The Institute of Cranio-Facial Deformity, Oral Science Research Center, Yonsei University)
  • 차정열 (연세대학교 치과대학 교정학교실) ;
  • 김경석 (연세대학교 치과대학 교정학교실) ;
  • 김동춘 (연세대학교 치과대학 교정학교실) ;
  • 황충주 (연세대학교 치과대학 교정학교실, 두개안면기형 연구소, 구강과학연구소)
  • Published : 2006.04.30

Abstract

The purpose of this study was to measure and compare the level of frictional resistance generated from three currently used ceramic brackets; 1, Crystaline $V^{(R)}$, Tomy International Inc., Tokyo, Japan; 2, $Clarity^{(R)}$, 3M Unitek, Monrovia, CA, USA; 3, $Inspire^{(R)}$, Ormco, Orange, CA, USA; with composite resin brackets, Spirit, Ormco, Orange, CA, USA; and conventional stainless steel brackets, Kosaka, Tomy International Inc., Tokyo, Japan used as controls. In this experiment, the resistance to sliding was studied as a function of four angulations $(0^{\circ},\;5^{\circ},\;10^{\circ}\;and\;15^{\circ})$ using 2 different orthodontic wire alloys: stainless steel (stainless steel, SDS Ormco, Orange, CA, USA), and beta-titanium (TMA, SDS Ormco, Orange, CA, USA). After mounting the 22 mil brackets to the fixture and $.019{\times}.025$ wires ligated with elastic ligatures, the arch wires were slid through the brackets at 5mm/min in the dry state at $34^{\circ}C$. Silica-insert ceramic brackets generated a significantly lower frictional force than did other ceramic brackets, similar to that of stainless steel brackets. Beta-titanium archwires had higher frictional resistance than did stainless steel, and all the brackets showed higher static and kinetic frictional force as the angulation increased. When the angulation exceeded $5^{\circ}$, the active configuration emerged and frictional force quickly increased by 2.5 to 4.5-fold. The order of frictional force of the different wire-bracket couples transposed as the angle increased. The silica-insert ceramic bracket is a valuable alternative to conventional stainless steel brackets for patients with esthetic demands.

최근 사용되고 있는 세라믹 브라켓의 마찰력을 측정하고 비교하고자 실험군으로 3종의 세라믹 브라켓(Crystaline $V^{(R)}$, Tomy, Tokyo, Japan; $Clarity^{(R)}$, 3M Unitek, CA; $Inspire^{(R)}$, Ormco, CA)을 사용하였으며 대조군으로 컴퍼짓 레진브라켓($Spirit^{(R)}$, Ormco, CA)과 메탈브라켓($Kosaka^{(R)}$, Tomy, Tokyo, Japan)을 사용하였다. 활주 시 마찰력은 4개의 브라켓-교정선 경사$(0^{\circ},\;5^{\circ},\;10^{\circ},\;15^{\circ})$에서 각각 측정되었으며 두 종의 교정선 [1. 스테인레스 스틸(Stainless Steel, SDS Ormco, Glendora, CA), 2. 베타-타이타늄(TMA, SDS Ormco, Glendora, CA)]이 사용되었다. 22 mil 브라켓을 만능시험기기에 부착한 후 $.021{\times}.025$ 크기의 교정선에 고무결찰한 후 $34^{\circ}C$의 건조상태에서 5 mm/min 속도로 교정 선을 활주시켰다. TMA 교정선은 스테인레스 스틸 교정선보다 높은 마찰력을 발생시켰으며 모든 브라켓 호선과의 조합에서 브라켓-교정선의 각도가 증가함에 따라 정적, 동적 마찰력이 증가하였다. $0^{\circ}{\sim}5^{\circ}$ 구간에서 마찰력의 크기는 스테인레스 스틸 교정선과 레진 브라켓 조합이 가장 낮게 측정되었으며 다음으로 Crystaline V, 금속 브라켓, Clarity, Inspire의 순으로 나타났다. TMA 교정선에서는 Crystaline V와의 조합이 가장 낮은 마찰력을, 다음으로 컴퍼짓 브라켓, Clarity, 금속 브라켓, Inspire 순으로 나타났다. $5^{\circ}$ 이상에서 마찰력이 급격하게 증가하였으며 스테인레스 스틸 교정선에서 레진 브라켓, Clarity, Crystaline V, 금속 브라켓, Inspire순으로 나타났다. TMA 교정선에서는 레진 브라켓, Crystaline V, Clarity, Inspire, 금속 브라켓 순으로 나타났다. 이때 호선 브라켓 조합에 대한 마찰력은 일반적으로 증가하였으나 마찰력 증가율의 차이로 인해 그룹간 마찰력의 순위가 서로 뒤바뀌는 경우가 관찰되었다. 실리카-삽입 세라믹 브라켓은 기존의 세라믹 브라켓보다 낮은 마찰력을 보여줄 뿐 아니라 브라켓-교정선의 경사도의 증가에서도 비교적 낮은 마찰력 증가율을 나타내어 세라믹 브라켓의 높은 마찰력을 감소시키는데 큰 역할을 할 수 있다고 생각된다.

Keywords

References

  1. Pratten DH, Popli K, Germane N, Gunsolley JC. Frictional resistance of ceramic and stainless steel orthodontic brackets. Am J Orthod Dentofacial Orthop 1990:98:398-403 https://doi.org/10.1016/S0889-5406(05)81647-6
  2. Bednar JR, Gruendeman GW, Sandrik JL, A comparative study of frictional forces between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 1991;100:513-22 https://doi.org/10.1016/0889-5406(91)70091-A
  3. Ireland AJ, Sherriff M, McDonald F. Effect of bracket and wire composition on frictional forces. Eur J of Orthod 1991:13:322-8 https://doi.org/10.1093/ejo/13.4.322
  4. Kusy RP, Whitley JQ. Coefficients of friction for arch wires in stainless steel and polycrystalline alumina bracket slots, I: the dry state. Am J Orthod Dentofacial Orthop 1990:98:300-12 https://doi.org/10.1016/S0889-5406(05)81487-8
  5. Springate SD, Winchester LJ, An evaluation of zirconium oxide brackets: a preliminary laboratory and clinical report. Br J Orthod 1991;18:203-9 https://doi.org/10.1179/bjo.18.3.203
  6. Tanne K. Matsubara S, Shibaguchi T, Sakuda M. Wire friction from ceramic brackets during simulated canine retraction. Angle Orthod 1991;61:285-90
  7. Saunders CR, Kusy RP. Surface modification methodologies for polycrystallinc alumina: effects on morphology and frictional coefficients. J Mater Sci: Mater in Med 1993;4:422-30 https://doi.org/10.1007/BF00122203
  8. Kusy RP, Keith O, Whitley JQ, Saunders CR. Coefficient of friction characterization of surface-modified polycrvstalline alumina. J Am Ceram Soc 1993;76:336-42 https://doi.org/10.1111/j.1151-2916.1993.tb03788.x
  9. Kusy RP, Whitley JQ. Friction between different wire-bracket configurations and materials. Semin Orthod 1997;3:166-77 https://doi.org/10.1016/S1073-8746(97)80067-9
  10. Dickson J, Jones S. Frictional characteristics of a modified ceramic bracket. J Clin Orthod 1996:30:516-8
  11. Cacciafesta V, Sfondrini MF, Scribante A, Klersy C, Auricchio F. Evaluation of friction of conventional and metal-insert ceramic brackets in various bracket-arch wire combinations, Am J Orthod Dentofacial Orthop 2003;124:403-9 https://doi.org/10.1016/S0889-5406(03)00501-8
  12. Tanne K, Matsubara S, Hotei Y, Sakuda M, Yoshida M. Frictional forces and surface topography of a new ceramic bracket. Am J Orthod Dentofacial Orthop 1994:106:273-8 https://doi.org/10.1016/S0889-5406(94)70047-8
  13. Tanne K, Matsubara S, Shibaguchi T, Sakuda M. Wire friction from ceramic brackets during simulated canine retraction. Angle Orthod 1991;61:285-90; discussion 291-2
  14. Yamaguchi K, Nanda RS, Morimoto N, Oda Y. A study of force application, amount of retarding force, and bracket width in sliding mechanics. Am J Orthod Dentofacial Orthop 1996:109:50-6 https://doi.org/10.1016/S0889-5406(96)70162-2
  15. Peterson L, Spencer R, Andreasen G. A comparison of friction resistance for Nitinol and stainless steel wire in edgewise brackets. Quintessence Int 1982;13:563-71
  16. Redlich M, Mayer Y, Harari D, Lewinstein I. In vitro study of frictional forces during sliding mechanics of 'reduced-friction' brackets. Am J Orthod Dentofacial Orthop 2003:124:69-73 https://doi.org/10.1016/S0889-5406(03)00238-5
  17. Nishio C, da Motta AF, Elias CN, Mucha JN. In vitro evaluation of frictional forces between arch wires and ceramic brackets. Am J Orthod Dentofacial Orthop 2004;125:56-64 https://doi.org/10.1016/j.ajodo.2003.01.005
  18. Thorstenson GA, Kusy RP. Comparison of resistance to sliding between different self-ligating brackets with second-order angulation in the dry and saliva states. Am J Orthod Dentofacial Orthop 2002:121:472-82 https://doi.org/10.1067/mod.2002.121562
  19. Thorstenson GA, Kusy RP. Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states. Am J Orthod Dentofacial Orthop 2001;120:361-70 https://doi.org/10.1067/mod.2001.116090
  20. Thorstenson GA, Kusy RP. Effects of ligation type and method on the resistance to sliding of novel orthodontic brackets with second-order angulation in the dry and wet states. Angle Orthod 2003;73:418-30
  21. Thorstenson GA, Kusy RP. Effect of arch wire size and material on the resistance to sliding of self-ligating brackets with second-order angulation in the dry state. Am J Orthod Dentofacial Orthop 2002:122:295-305 https://doi.org/10.1067/mod.2002.126156
  22. Kusy RP, Whitley JQ. Influence of arch wire and bracket dimensions on sliding mechanics: derivations and determinations of the critical contact angles for binding. Eur J Orthod 1999:21:199-208 https://doi.org/10.1093/ejo/21.2.199
  23. Braun S, Bluestein M, Moore BK, Benson G. Friction in perspective. Am J Orthod Dentofacial Orthop 1999;115:619-27 https://doi.org/10.1016/S0889-5406(99)70286-6
  24. Articolo LC, Kusy RP, Influence of angulation on the resistance to sliding in fixed appliances, Am J Orthod Dentofacial Orthop 1999;115:39-51 https://doi.org/10.1016/S0889-5406(99)70314-8
  25. Bazakidou E, Nanda RS, Duncanson MG Jr, Sinha P, Evaluation of frictional resistance in esthetic brackets, Am J Orthod Dentofacial Orthop 1997;112:138-44 https://doi.org/10.1016/S0889-5406(97)70238-5
  26. Riley JL, Evaluation of frictional forces with plastic and metal $0,022{\times}0.028$ edgewise brackets ligate with stainless steel ties and plastic modules, [Thesis] Richmond: Virginia Commonwealth University, School of Dentistry; 1977
  27. 이원유, 임경수. 교정용 Resin bracket의 마찰 저항력에 관한 연구. 대치교정지 1999;29:107-12
  28. Weiss L. Frictional characteristics of esthetic bracket in sliding mechanics. [Thesis.] Toronto: Department of Orthodontics, University of Toronto; 1993
  29. Kemp DW. A comparative analysis of frictional forces between self-ligating and conventional edgewise orthodontic brackets. [Thesis.] Toronto: Department of Orthodontics, University of Toronto; 1992
  30. Cash A, Curtis R, Carrigia-Majo D, McDonald F. A comparative study of the static and kinetic frictional resistance of titanium molybdenum alloy arch wires in stainless steel brackets. Eur J Orthod 2004;26:105-11 https://doi.org/10.1093/ejo/26.1.105
  31. Kapur R, Sinha PK, Nanda RS. Comparison of frictional resistance in titanium and stainless steel brackets. Am J Orthod Dentofacial Orthop 1999:116:271-4 https://doi.org/10.1016/S0889-5406(99)70237-4