Clay Mineral Composition of the Soils Derived from Residuum and Colluvium

잔적 및 붕적모재 토양의 점토광물 특성구명

  • Zhang, Yong-Seon (National Institute of Highland Agriculture, RDA) ;
  • Sonn, Yeon-Kyu (National Institute of Agricultural Science and Technology, RDA) ;
  • Jung, Sug-Jae (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Gye-Jun (National Institute of Highland Agriculture, RDA) ;
  • Kim, Myung-Sook (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Sun-Kwan (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Ju-Young (National Institute of Agricultural Science and Technology, RDA) ;
  • Pyun, In-Hwan (Seosan Agricultural Technology Center)
  • Received : 2006.09.13
  • Accepted : 2006.10.13
  • Published : 2006.10.30

Abstract

This experiment was conducted to investigate the distribution and compositions of clay mineral and to replenish the soil classification system in Korea. Soil layer samples were collected from 26 residuum and colluvium soil series out of 390 soil series in Korea, and then analyzed for soil physical and chemical characteristics, mineral and chemical compositions of clay in B horizon soils. Major clay minerals of residuum and colluvium were illite and chlorite in soils originated from the sedimentary rock such as limestone, shale, sandstone and conglomerate; quartz and kaolin in soils originated from rhyolite, neogene deposits, porphyry and tuff; and kaolin and quartz in the soils originated from granite, granite gneiss and anorthosite. Clay minerals in Korean soils were divided into 4 groups: mixed mineral group(MIX) mainly contained with illite, kaolin and vemiculite; kaolin group(KA) with kaolin and illite; chlorite group(CH) with chlorite and illite; and smectite group(SM) with kaolin, illite and smectite. The most predominant clay mineral group was kaolin group(KA) with kaolin and illite; an mixed mineral group(MIX) with illite, kaolin and vemiculite. Cation exchange capacity (CEC) of clay was low in the soils mainly composed with MIX and KA groups and silica-alumina molar ratio of clay was high in the soils composed with SM group

우리나라 토양의 분류체계를 보완하고 점토광물 조성과 분포를 파악하기 위하여 우리나라 390개 토양통 중 잔적 및 붕적토에서 유래된 26개 토양통을 대상으로 토양 층위별료 시료를 채취하여 집적층을(B층) 토양의 이화학적 특성, 토양 중 점토의 광물조성과 화학성분을 분석하였다. 잔적 및 붕적모재별로는 화강암과 화강편마암, 회장암에서 유래된 토양에서 kaolin과 quartz, 유문암, 3기층, 석영반암, 응회암에서 유래된 토양에서 quartz과 kaolin, 석회암, 혈암, 사암, 역암 등 퇴적암에서 유래된 토양에서 illite와 chlorite가 주요한 점토광물이었다. 토양통별 점토광물조성을 군집분석 (CA, cluster analysis)을 통하여 (1) illite, kaolin, vemiculite를 주광물로 하는 혼합점토광물군 (MIX), (2) kaolin을 주광물로 illite가 많은 kaolin군 (KA), (3) chlorite와 illite가 주광물인 chlorite군 (CH), (4) kaolin과 illite를 주광물로 smectite가 함유된 smectite군 (SM) 등 4개의 점토광물 조성군으로 구분하였다. 우리나라 토양의 대부분은 kaolin을 주광물로 하는 토양과 illite, kaolin, vemiculite가 함유된 토양이었으며, illite와 kaolin을 주광물로 하는 토양에서 CEC가 낮았고 vemiculite와 smectite가 함유된 점토에서 규반비가 높았다.

Keywords

References

  1. Birkeland, P.W. 1994. Variation in soil-catena characteristics of moraines with time and climate, South Island, New Zealand. Quaternary Res. 42:49-59 https://doi.org/10.1006/qres.1994.1053
  2. Biscaye, P.E. 1965. Mineralogy and sedimentation of recent deepsea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull. 76:803-831 https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  3. Bohor, B.R., and R.E. Hughes. 1971. Scanning electron microscope of clays and clay minerals. Clays clay Miner. 19:49-54 https://doi.org/10.1346/CCMN.1971.0190105
  4. Borchardt, G.A. 1977. Montmorillonite and other smectite minerals. P293-330. In J.B Dixon, and S.B. Weed(ed). minerals in soil environments. Soil Sci. Am. Madison, WI
  5. Chesworth, W. 1973. The parent material effect and the genesis of soils. Geoderma 10:215-225 https://doi.org/10.1016/0016-7061(73)90064-5
  6. Choi, D.K., G.L. Jeong, and S.Y. Choi. 1999. Middle cambrian trilobites from the Sambangsan formation in Yongwol area, Korea. J. Paeont. Soc. Korea. 15(2):134-144
  7. Chung, F.H. 1974. Quantitative interpretation of x-ray diffraction patterns of mixtures. I. Matrix flushing method for quantitative multi-component analysis. J. Appl. Crystallog. 7:519-525 https://doi.org/10.1107/S0021889874010375
  8. Dewan, HC., K.H. Kim, and Y.S. Lee. 1968. Chemical and mineralogical properties of two Low-Humic Gley Soils of Korea. J. Korean Soc. Soil Sci. Fert., 1:129-136
  9. Grim, R.E. 1968. Clay mineralogy. Mcgraw-Hill Book Company. Inc
  10. Heath, G.R., and N.G. Pisias. 1979. A method for the quantitative estimation of clay minerals in North Pacific deep sea sediments. Clays Clay Miner. 27:175-184 https://doi.org/10.1346/CCMN.1979.0270302
  11. Kang, Y.P. 2001. The characteristic of red soil and karst landforms in South Korea. Geomorphological Union. 22(3):381-389. (in Japanese)
  12. Kim, K.H. 1990. Paleomagnetism and northward drift of South Korea. J. Korean Earth Science Society. 11(1):67-73
  13. Marsan. F.A., D. C. Bain, and D. M. L. Duthie. 1988. Parent material uniformity and degree of weathering in a soil chronosequence. northwestern Italy. Catena 15:507-517 https://doi.org/10.1016/0341-8162(88)90002-1
  14. NIAST. 2000. Taxonomical classification of Koreans
  15. Ottner, F., S. Gier., M. Kuderna, and B. Schwaighofer. 2000. Results of an inter-laboratory comparison of methods for quantitative clay analysis. Applied Clay Science 17:223-243 https://doi.org/10.1016/S0169-1317(00)00015-6
  16. Park, C.S., K.Y. Jung, J.J. Kim, and S.J. Cho. 1984. Relative contribution of organic matter and clay content to cation exchange capacity in sandy soils. J. Korean Soc. Soil Sci. Fert. 17(4):337-342
  17. Rebertus, R.A., and S.W. Buol. 1985. Iron distribution in a developmental sequence of soils from mica genesis and schist. Soil Sci. Soc. Am. J. 49:713-720 https://doi.org/10.2136/sssaj1985.03615995004900030037x
  18. Shin, J.S., and R. Tavernier. 1988. Composition and genesis of volcanic ash soils in Jeju Island. II. Mineralogy of sand, silt and clay fractions. Mineral Society of America 1(1):40-47
  19. Smith, D.K. 1989. Computer analysis of diffraction data. Ch. 7 : in Modern Powder Diffraction, D.L. Bish and J.E. Post, eds., Reviews in Mineralogy 20, Mineralogical Society of America, 369 pp
  20. Song, K.C., and S.H. Yoo. 1994. Andic properties of major soils in Cheju Island. III. Conditions for formation of Allophane. J. Korean Soc. Soil Sci. Fert. 27(3):149-157
  21. Templin, E.H., I.L. Martin, and R.S. Dyal. 1951. Red-yellow podzolic soils of the southeastern United States I & II. Agronomy J. 43:476-487 https://doi.org/10.2134/agronj1951.00021962004300100003x
  22. Wilke, B.M., V.K. Mishra, and K.E. Rehfuess. 1984. Clay mineralogy of a soil sequence in slope deposits derived from Hauptdolomit (dolomite) in the Bavarian Alps. Geoderma 32:103-116 https://doi.org/10.1016/0016-7061(84)90066-1
  23. Zhang, Y.S., Y.H. Kim, K.C. Song, and S.K. Kim. 2002. Mineralogical characteristics of the Noro and Miag series soils developed on the cinder cones in Jeju Island. J. Korean Soc. Soil Sci. Fert. 35(3):145-152