Effect of Gamma Irradiation and Cichorium Products on Oxidative Damage and Lipid Metabolism in Streptozotocin-Induced Diabetic Rats

감마선 전신 조사와 치커리 가공물 식이가 Streptozotocin 유발 당뇨쥐의 산화적 손상과 지질대사에 미치는 영향

  • 우현정 (한국원자력연구소 정읍분소 방사선연구원) ;
  • 김지향 (한국원자력연구소 정읍분소 방사선연구원) ;
  • 김진규 (한국원자력연구소 정읍분소 방사선연구원) ;
  • 김희정 (경원 시너지 (주)) ;
  • 박기범 (경원 시너지 (주))
  • Published : 2006.06.01

Abstract

The increased occurrence of hyperglycemia and oxidative stress in streptozotocin (STZ) induced type I diabetes has been implicated in the etiology and pathology of disease complication. STZ has known to be genotoxic in a variety of assays including tests for microbial mutagenesis and unscheduled DNA synthesis in rat kidney. Diabetes mellitus (DM) is a pathologic condition, resulting in severe metabolic imbalances and non-physiologic changes in many tissues. We examined the effect of gamma radiation and KWNP on preventing the development of insulin dependent diabetes mellitus using streptozotocin-induced Fisher 344 diabetic rats. The hematological values (red blood cell and white blood cell), serum biochemical constituents-alkaline phosphatase (ALP), total cholesterol, triglycerides and insulin-were checked and the organs (testis, spleen and kidney) were weighed. The gonad indices of the STZ treated groups were much lower than the value of the control group. But the gonad indices of the KWNP treated groups were higher than those of the treated groups. The ratio of the weight of kidney to the body weight of the STZ treated groups was higher than that of the control group. The value of the diabetic group treated with KWNP after irradiation (F group) was lower than the other STZ treated groups. The white blood cell and ALP values of the F group were lower than the other STZ groups, as well. The cholesterol and triglyceride values of all the KWNP treated groups were significantly lower than the other groups. A significant increase (about 10 times) of insulin was detected in the F group. The results of hematological assay showed the distinctive damage in the irradiated and STZ treated groups. The quantity of apoptotic cells in seminiferous tubule of testis confirmed a serious damage as assessed in the STZ treated groups. These experimental results have revealed that treatment of the products of KWNP after irradiation has the antidiabetic effect in the STZ-induced diabetic rats. But the F group showed higher recuperative power. These experimental results have revealed that treatment of the gamma irradiation and KWNP have the recovering effect in the STZ-induced diabetic rats.

KWNP의 특정 손상에 대한 회복 효과에 대한 과학적인 접근을 하기 위해서 본 연구를 수행하였다. 실험은 STZ를 복강 주사하여 당뇨를 유발, $220mg\;dL^{-1}$ 이상인 실험동물을 이용하여 수행되었으며 방사선 전신 조사 실험군과 KWNP 처리군 간의 각 항목 분석치를 비교, 분석하였다. 실험 5주간의 체중증가율은 방사선 처리군과 당뇨군 모두 대조군에 비하여 낮게 나타났으며 특히 당뇨군에서는 통계적으로 유의적으로 낮았다. 정소와 비장, 또 당뇨병의 직접적인 병증이 나타나는 신장의 무게를 비교한 결과, 방사선을 조사한 실험군의 경우 대조군과 비교하여 정소의 무게의 감소는 비교적 뚜렷하게 관찰된 반면 비장의 무게는 유의한 감소가 관찰되지 않았다. 당뇨군에서는 대조군과 비교하여 정소의 현저한 무게감소가 관찰되었으며 신장의 무게는 유의하게 증가되었다. 혈액 내 지표인자의 수준 변화는 적혈구의 경우 모든 실험군에서 감소하는 경향을 보였으며, 백혈구의 경우에는 방사선처리군, STZ와 방사선 복합 처리군, 당뇨군에서 낮은 수치를 나타냈다. ALP의 측정 결과, 당뇨군에서 그 수치가 현저하게 높아짐을 확인할 수 있었고, STZ와 방사선, KWNP를 복합 처리한 실험군에서는 백혈구의 수치 및 ALP 수치를 측정한 결과 모두에서 방사선 처리구나 당뇨군에 비하여 그 회복능이 현저히 높은 것을 확인할 수 있었다. 혈중중성지질의 증가율 확인결과 KWNP를 처리한 모든 군에서 현저한 지질의 감소를 확인 할 수 있었다. 인슐린의 수치 측정 결과, STZ와 방사선, KWNP를 복합 처리한 실험군에서 다른 당뇨군과 비교하여 10배 정도 높은 insulin수치가 측정되었다. 조직학적 검경시 정소의 경우, 방사선 처리군과 당뇨군 모두에서 정소 세정관의 직경감소와 세정관 내부의 공포화가 관찰되었고 당뇨군의 경우 세정관 내부의 비가 역적 손상이 관찰되었다. 신장의 경우 유의한 형태적 차이는 관찰되지 않았으나 당뇨군의 근위곱슬세관 분분에 세포 자연사가 중점적으로 발견되었다.

Keywords

References

  1. Schindl A, G Heinze, M Schindl, H Pernerstorfer-Schon and L Schindl. 2002. Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc. Res. 64:240-246 https://doi.org/10.1006/mvre.2002.2429
  2. Bolzan AD and SB Bianchi. 2002. Genotoxicity of streptozotocin. Mutat. Res. 512: 121-134 https://doi.org/10.1016/S1383-5742(02)00044-3
  3. Fukuda S, S Tsuchikira and H Iida. 2004. Age-related changes in blood pressure, hematological values, concentrations of serum biochemical constituents and weights of organs in the SHR/Izm, SHRSP/Izm and WKY/Izm, Exp. Anim. 53: 67-72 https://doi.org/10.1538/expanim.53.67
  4. Raza H, I Ahmed and A John. 2003. Tissue specific expression and immunohistochemical localization of glutatione Stransferase in streptozotocin induced diabetic rats: modulation by Momordica charantia (karela) extract. Life Sci. 74: 1503-1511 https://doi.org/10.1016/j.lfs.2003.08.023
  5. Homma N. 1988. Bifidobacteria as a residence factor in human beings. 7:35-43 https://doi.org/10.12938/bifidus1982.7.1_35
  6. Kim JK, JH Kim and YD Y oon. 2003. Evaluation of caffeine as a radioprotector in whole-body irradiated male mice. In Vivo 17:197-200
  7. Kim JH, JK Kim and YD Yoon. 2004. Evalution of biological effects of low concentrations of mercury chloride (II) and ionizing radiation in the prepubertal male rats. Korean J. Environ. Biol. 22:411-418
  8. Lee JS, HS Son, YS Maeng, YK Chang and JS Ju. 1994. Effects of buckwheat on organ weight, glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean J. Nutr. 27:819-827
  9. Lee JS, GS Lee and HK Shin. 1997. Effects of Chicory extract on the serum glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean J. Nutr. 30:781-788
  10. Lee CJ, HH Park, BR Do, YD Yoon and JK Kim. 2000. Natural and radiation-induced degeneration of primordial and primary follicles in mouse ovary. Ani. Reprod. Sci. 59: 109-117 https://doi.org/10.1016/S0378-4320(00)00072-5
  11. Levrat MA, C Rmsy and C Demign. 1991. High propionic acid fermcnsations and mineral accumulation in the cecum of rats adapted o different levels of inulin. J. Nutr. 35:525-552
  12. Mauer SM, MW Steffes, AF Michael and DM Brown. 1976. Studies of diabetic nephropathy in animal and man. Diabetes 25:850-857
  13. Morel DW and GM Chisolm. 1983. Antioxidative treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity. J. Lipid Res. 30: 1827-1837
  14. Rhee SJ and JH Choi. 2001. Effects of green tea catechin on the superoxide dismutase, glutathione peroxidase and xanthine oxidase activities of kidney in diabetic rats. Korean J. Nutr. 34:734-740
  15. Roberfroid M, GR Gibson and N Delzenne. 1993. The biochemistry of oligofructose, a nondigestible fiber: An approch to calculate its caloric value. Nutr. Rev. 51:137-146 https://doi.org/10.1111/j.1753-4887.1993.tb03090.x
  16. Sencr G, N Jahovic, OB Tosun, M Atasoy and Be;: Yeen. 2003. Melatonin ameliorates ionizing radiation-induced oxidative organ damage in rat. Life Sci. 74:563-572 https://doi.org/10.1016/j.lfs.2003.05.011
  17. Sung HJ, MH Kang, HK Chung, ES Song, MH Jeong, JB Lee and KS Min. 2001. Antioxidant effects of seamin and sesamolin in streptozotocin-induced diabetes mellitus rat. J. Fd Hyg. Safety. 16:349-354
  18. Takaharu Nand S Kazuo. 2005. Effects of low dose-rate irradiation on the glucose metabolism in type II diabetes model mice. Internat. Congo Ser. 1276:185-186 https://doi.org/10.1016/j.ics.2004.12.004
  19. Vijayalaxrni, RJ Reiter, TS Herman and ML Meltz. 1998. Melatonin reduces gamma radiation-induced primary DNA damage in human blood lymphocytes. Mutat. Res. 397: 203-208 https://doi.org/10.1016/S0027-5107(97)00211-X
  20. Wada K, H Miki, M Etoh, F Okuda, T Kumada and R Kusukawa. 1983. The inhibitory effect of lipid peroxides on the activity of the membrane bound and the solubilized lipoprotein lipase. Jan. Clinc. J. 47:837-842
  21. Wesson LG. 1989. Compensatory groeth and other growth response of the kidney. Nephron 51: 149-184 https://doi.org/10.1159/000185282