Effect of Turbidity Changes on Antioxidant Enzyme Activity of Carassius auratus Tissues

탁도 변화가 붕어 조직의 항산화효소 활성에 미치는 영향

  • Shin, Myung-Ja (Department of Biological Science, Andong National University) ;
  • Lee, Chung (Department of Biological Science, Andong National University) ;
  • Lee, Jong-Eun (Department of Biological Science, Andong National University) ;
  • Seo, Eul-Won (Department of Biological Science, Andong National University)
  • 신명자 (안동대학교 자연과학대 생명과학과) ;
  • 이청 (안동대학교 자연과학대 생명과학과) ;
  • 이종은 (안동대학교 자연과학대 생명과학과) ;
  • 서을원 (안동대학교 자연과학대 생명과학과)
  • Published : 2006.06.01

Abstract

Present study aims to study antioxidant enzyme activity due to turbidity change in various tissues of Carassius auratus. As for the changes of antioxidant enzyme activity in tissues of C. auratus pursuant to the raising period under 50, 100, and 150 NTU with turbid water levels, there was no great difference between 50 NTU and 100 NTU compared to a control (0 NTU), however, it demonstrated a relatively noticeable difference at 150 NTU high turbid water level. When considering the antioxidant capacity in tissues of C. auratus in terms of DPPH free radical scavenging activity, there was shown a high activity in gill and liver tissues, therefore, it is thought that there appears a non-enzymatic antioxidant reaction when C. auratus is reared under the condition of highly turbid water. As for the enzymatic antioxidant reaction of antioxidant enzyme activity got increased as turbid water level went higher in order of 50, 100, 150 NTU, and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transperase (GST), increased in all tissues except for an integument, up to 20th day when it was started to be reared, and they showed a gradual decrease as time passed by. However, since the activity of glutathione reductase (GR) and glutathione peroxidase (GPX) is very low in almost all tissues, it is thought that the role of those enzymes would be quite ignorable in the course of antioxidant process.

본 연구에서는 붕어를 이용하여 탁도 변화에 따른 여러 조직의 항산화효소 활성을 조사하였다. 탁도 50, 100, 150 NTU에서 사육기간에 따른 붕어 조직의 항산화효소 활성의 변화는 50과 100 NTU에서는 대조구에 비해 큰 변화가 없었으며, 고탁도인 150 NTU에서 비교적 두드러진 차이를 나타냈다. 붕어 조직의 항산화능을 DPPH 소거 활성도에서 보면 아가미, 간 조직에서 높은 활성을 보여 고탁도의 사육 조건에서 장기간 사육될 때 비효소적 항산화작용이 일어나는 것으로 생각된다. 효소적 항산화작용은 50, 100, 150NTU로 탁도가 높아짐에 따라 항산화효소의 활성이 증가하였으며 SOD, CAT및 GST의 활성은 표피를 제외한 모든 조직에서 사육 후 20일까지는 증가한 후 사육 후기로 갈수록 감소하는 경향을 나타냈다. 그러나 GR과 GPX의 활성은 거의 모든 조직에서 활성이 매우 낮으므로 어류의 항산화과정에서 이들 효소의 역할은 매우 적을 것으로 생각된다.

Keywords

References

  1. 양정환,여인규 2004. 넙치 (Paralichthys olivaceus)에서의 급격한 수온변화 스트레스에 관한 생리학적 연구,Korean J. lchthyol. 16: 19-26
  2. 허민도,정현도. 1993. 어류의 아가미 조직학적 구조와 병변,J. Fish Pathol., 6:65-70
  3. Aebi H. 1984. Catalase in vitro. In Packer (ed): Methods in Enzymology. New York, Academic Press. 105:121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  4. Aksnes A and LR Njaa. 1981. Catalase, Glutathione peroxidase and superoxide dismutase in different fish species. Comp. Biochem. Physiol. 69B:893-896
  5. Allen A, DA Hutton, AJ Leonard, JP Prson and LA Sellers. 1986. The role of mucus in the protection of the gastroduodenal mucosa. Scand J. Gastroenteral. 21 (suppl. 125):71-77
  6. Chance B, H Siec and A Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59:527-605 https://doi.org/10.1152/physrev.1979.59.3.527
  7. Chen Y, XD Cao, Y Lu and XR Wang. 2000. Effects of rare earth metal ions and their EDTA complexes on antioxidant enzymes of fish liver. Environ. Contam. Toxicol. 65:357-365 https://doi.org/10.1007/s001280000136
  8. Flohe L, A Wolfgang and W A Gunzler. 1984. Assay of glutathione peroxidase, pp 105-114. Methods in enzymatic analysis, Packer, L. ed. New York, Academic Press Inc
  9. Forman HJ and I Fridovich. 1973. Superoxide dismutase: A comparison of rate constant. Arch. Biochern. Biophys. 158:396 https://doi.org/10.1016/0003-9861(73)90636-X
  10. Gabryelak T, M Piatrowska, W Leyko and G Peres. 1983. Seasonal variation in the activities of peroxide metabolism enzymes in erythrocytes of freshwater fish species. Comp. Biochem. Physiol. 75C:383-385
  11. Glatzle D, JP Vuilleumier, F Weber and K Decker. 1974. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia 30:665-668 https://doi.org/10.1007/BF01921531
  12. Goldberg B and A Stern, 1997. The role of the superoxide anion as a toxic species in the erythrocyte. Arch. Biochem. Biophys. 178:218-225
  13. Habig WH and WB Jakoby. 1981. Glutathione S-transferase in rat and human. Meth. Enzymol. 77:218-231 https://doi.org/10.1016/S0076-6879(81)77029-0
  14. McCord JM and I Fridovich. 1969. Superoxide dismutase an enzymic function ferythrocuprotein (Hemocuprotein). J. Biol. Chem. 244:6049-6055
  15. Moody CS and HM Hassan. 1982. Mutagenicity of oxygen free radicals. Proc. Natl. Acad. Sci. 79:2855-2859
  16. Parihar MS, T Javeri, T Hemnani, AK Dubey and P Prakash. 1997. Responses of superoxide dismutase, glutathion peroxidase and reduced glutathion antioxidant defenses in gills of the freshwater catfish (heteropneustes fossilis) to short-term elevated temperature. J. Therm. Biol. 22: 151-156 https://doi.org/10.1016/S0306-4565(97)00006-5
  17. Yoshida T, K Mori, T Hatano, T Okumura, I Uehara, K Komagoe, Y Fujita and T Okuda. 1989. Studies on inhibition mechansim of autoxidation by tahanins and flovonoids. V. Radicalcavenging effects of tannins and related polyphenols on 1, 1-dipheny-2-picrylhydrazyl radical. Chem. Pharmaceut. Bull. 37:1919-1921 https://doi.org/10.1248/cpb.37.1919
  18. Wendel A and S Feuerstein. 1981. Drug-induced lipid peroxidation in mice-I. Modulation by monoxygenase activity, glutathione and selenium status. Biochem. Pharmacol. 30: 2513-2520 https://doi.org/10.1016/0006-2952(81)90576-1
  19. Zikic RV, AS Stajn, SZ Pavlovic, BI Ogenjanovic and ZS Saicic. 2001. Activities of superoxide dismutase and catalase in erythrocytes and plasma transaminases of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium. Physiol. Res. 50: 105-111