Changes of Surface $M_2$ Currents as Observed by HF Radar Before and After Saemangeum Fourth Tidal Dyke Closing

새만금 4호 방조제 완성 전.후 HF 레이다로 관측된 표층 $M_2$ 조류의 변화

  • Kim Chang-Soo (Department Oceanography SERC, Kunsan National University) ;
  • Lee Sang-Ho (Department Oceanography SERC, Kunsan National University) ;
  • Son Young-Tae (Department Oceanography SERC, Kunsan National University) ;
  • Kwon Hyo-Keun (Department Oceanography SERC, Kunsan National University) ;
  • Lee Kwang-Hee (Department Oceanography SERC, Kunsan National University) ;
  • Kim Young-Bae (National Oceanographic Research Institute) ;
  • Jeong Ou-Jin (National Oceanographic Research Institute)
  • 김창수 (군산대학교 해양학과, 새만금환경 연구센터) ;
  • 이상호 (군산대학교 해양학과, 새만금환경 연구센터) ;
  • 손영태 (군산대학교 해양학과, 새만금환경 연구센터) ;
  • 권효근 (군산대학교 해양학과, 새만금환경 연구센터) ;
  • 이광희 (군산대학교 해양학과, 새만금환경 연구센터) ;
  • 김영배 (국립해양조사원) ;
  • 정우진 (국립해양조사원)
  • Published : 2006.05.01

Abstract

HF radar-derived current data obtained in 2002 and 2004 are analyzed to examine the effects of the completion of the Saemangeum 4th tidal dyke in June 2003, connecting Gogunsan-Gundo and Bieung-Do, on the coastal surface $M_2$ current pattern. Comparison between the currents by HF radar and current meter mooring showed good agreements. Counterclockwise rotation of the $M_2$ current in the observed area did not change with the dyke construction. Strong westward ebb jet from the gap of the dyke was observed in 2002 but disappeared in 2004. The complete closing of the dyke gap caused the current speed increase around the mouth of the Kem River estuary, decrease around Gogunsan-Gundo and the dyke, the changes in the direction of maximum current to north-ward from eastward and the delay of the maximum flood current occurrence around Gogunsan-Gundo and the dyke. Around Yeon-Do, the maximum flood current directed more clockwise and occurred rather earlier. These changes of the $M_2$ current ellipse characteristics imply that the effects of the dyke construction reached the area connecting Mal-Do and Yeun-Do.

2003년 6월에 고군산군도와 비응도를 완전히 연결한 새만금 4호 방조제의 완공이 연안역 표층 $M_2$조류분포에 미치는 영향을 알아보기 위하여 2002년과 2004년에 HF radar로 관측된 유동자료를 분석하였다. 분석에 사용된 자료와 유속계 계류에 의해 관측된 자료는 좋은 일치를 보였다. $M_2$조류는 관측구역 내에서 반시계방향의 회전성을 보였으며 방조제 완전 체절로 인하여 회전방향이 변경되지는 알았다. 2002년에는 방조제의 미체절 구간을 통해 서쪽으로 향하던 ebb jet가 관측되었지만, 2004년에는 이 흐름이 나타나지 않았다. 방조제 완전체절로 인하여 금강하구 입구부근에서 유속이 증가하였고, 고군산군도 및 방조제 부근에는 유속이 감소하였으며 최강 창조류의 방향이 동서방향에서 남북방향으로 변화되었고 최강 창조류 발생시각이 늦어졌다. 연도 주변해역에서도 최강 창조류 방향이 시계방향으로 변경되었으나 최강 창조류 발생시각은 오히려 빨라졌다. 이러한 $M_2$ 조류타원 특성의 변화는 방조제 체절의 영향이 연도와 말도를 잇는 지역까지 미치고 있음을 의미한다.

Keywords

References

  1. 고재원, 정선택, 김철, 조흥연, 2001. 지리정보체계를 이용한 만경강 동진강의 유역정보 및 오염부하량 분석. 한국해안해양공학회지, 13(3): 237-244
  2. 국립해양조사원, 2005 조석표(한국연안)
  3. 권효근, 이상호, 1999. 하구언 수문작동으로 인한 금강 하구역의 물리적 환경변화 I. 평균해수면과 조석. 한국해양학회지(바다), 4(2): 93-100
  4. 농어촌진흥공사, 1990-1998. 새만금지구 간척종합개발사업 사후환경영향 조사보고서
  5. 신은주, 이상호, 최현용, 2002.금강풀룸의 구조와 분포에 대한 수치모델 연구. 한국해양학회지(바다), 7(3): 157-170
  6. 이상호, 권효근, 최현용, 양재삼, 최진용, 1999. 하구언 수문작동으로 인한 금강 하구역의 물리적 환경변화 II. 염분구조와 하구 유형. 한국해양학회지(바다), 4(4): 255-265
  7. 이상호, 최현용, 권효근, 2001. 하구언 수문작동으로 인한 금강 하구역의 물리적 환경변화 III. 저염수의 조석동조. 한국해양학회지(바다), 6(3): 115-125
  8. 이상호, 최현용, 손영태, 권효근, 김영곤, 양재삼, 정해진, 김종구, 2003. 하계서해안 새만금 연안역 주변 저염수와 순환. 한국해양학회지(바다), 8(2): 138-150
  9. 이상호, 최현용, 오임상, 1995. 하계금강 Plume의 구조와 변동. 한국해양학회지(바다), 30: 125-137
  10. 정종률, 이재학, 안희수, 1983. 금강하구의 해수 순환 역학. 한국 해양학회지(바다), 18: 142-148
  11. 최현용, 이상호, 유광우, 1999. 금강히구언 대량방류시 관측된 황해중동부 연안역의 염분분포. 한국해양학회지(바다), 4(1): 1-9
  12. Barrick, D.E., M.W. Evans, and B.L. Weber, 1977. Ocean surface currents mapped by radar, Science, 198: 138-144 https://doi.org/10.1126/science.198.4313.138
  13. Beardsley, R.C., R. Limeburner, K. Kim, and J. Candela, 1992 Lagrangian flow observations in the East China, Yellow and Japan Seas. La Mer, 30: 297-314
  14. Choi, B.H., 1980. A tidal model of the Yellow Sea and the Eastern China Sea. Korea Ocean Research and Development Institute (KORDJ) Report 80-02, pp72
  15. Choi, B.H., 2001. Effect of Saemangeum tidal barriers on the Yellow Sea tidal regime. Proceedings of the first Asian and Pacific Coastal Engineering Conference, APACE 2001, Dalian, China, 1: 25-36
  16. Choi, B.H. and H.S. Lee, 2003. Preoperational simulation of dike closure for Saemangeum tidal barriers. In: Hydro-environmental impacts of large coastal developments, ed. B. H. Choi and W. Kioka, ACECC-TCI workshop proceeding by KSCOE and CEC-JSCE, pp91-11
  17. Easton, A.K., 1977. Selected programs for tidal analysis and prediction. Computing Report. The Flinders Institute for Atmospheric and Marine Sciences, pp79
  18. Fang, Z., A. Ye, and G. Fang, 1991. Solutions oftidal motions in a semi-closed rectangular gulf with open boundary condition specified. In Tidal Hydrodynamics, ed. B. Parker, John Wiley & amp; Sons, 153-168
  19. Graber, H.C., B.K. Haus, L.K.Shay and R.D. Chapman, 1997. HF radar comparisons with moored estimates of current speed and direction: expected differences and implications. J. Geophysical Research, 102(8): 18749-18766 https://doi.org/10.1029/97JC01190
  20. Haus, B.K., J.D. Wang, J. Rivera, J. Martinez-Pedraja, and N. Smith, 2000. Remote radar measurement of shelf currents off Key Largo, Florida, USA. Estuarine, Coastal and Shelf Sciences 51: 553-569 https://doi.org/10.1006/ecss.2000.0704
  21. Hisaki, Y., Tokeshi, T., Fujiie, w., Sato, K., Fujii, S., 2001. Surface current variability east of Okinawa Island obtained from remotely sensed and in situ observational data, J. Geophysical Research, 106(12): 31057-31073 https://doi.org/10.1029/2000JC000784
  22. Kang, S.K., 2002. Study on tidal change prediction due to the large scale of coastal reclamation (TIDPREII), KORDI rept. BSPM 191-00-1560-2, pp426
  23. Kantha, L.H., I.K. Bang, J.K. Choi, and M.S. Suk, 1996. Shallow water tides in the Yellow Sea. J. Korean Soc. Oceanography, 31: 123-133
  24. Knight, P.J., M.J. Howarth, 1999. The flow through the northern channel of the Irish Sea. Continental Shelf Research. 19(5): 693713 https://doi.org/10.1016/S0278-4343(98)00110-1
  25. Kovacvic, V., M. Gacic, I . Mancero Mosquera, A. Mazzoldi, and S. Marinetti, 2004. HF radar observations in the northern Adriatic: surface current field in front of the Venetian Lagoon. J. Marine Systems. 51: 95-122 https://doi.org/10.1016/j.jmarsys.2004.05.026
  26. Lee, S.H., 2003. Variability of currents observed in Saemangeum coastal region. Workshop on Hydro-environmental Impacts of Large Coastal Developments. ACECC-TCI Workshop Proceeding by KSCOE and CEC-JSCE, 73-89
  27. Lee, S.H. and Beardsley, R.C., 1999. Influence of stratification on residual tidal currents in the Yellow Sea, J. Geophysical Research, 104: 15679-15701 https://doi.org/10.1029/1999JC900108
  28. Lee, S.H., H.Y. Choi, H.K. Kwon and E.J. Shin, 1999. Estuary type and plume structure of the Keum River estuary. In Progress in coastal engineering and oceanography. Vol. 1 Coastal oceanography of asian seas. Korean Society of Coastal and Ocean Engineers.143-156
  29. Ogura, S., 1933. The tides in the seas adjacent to Japan. Bulletin of Hydrographic Department, Imperial Jpn. Navy, 7: 1-189
  30. Prandle, D., 1987. The fine-structure of nearshore tidal and residual circulations revealed by H.F. radar surface current measurements. J. Physical Oceanography. 17: 231-245 https://doi.org/10.1175/1520-0485(1987)017<0231:TFSONT>2.0.CO;2
  31. Schureman, P., 1941. Manual of Harmonic Analysis and Prediction of Tides. Special Publication No. 98, Coast and Geodetic Survey
  32. Son, Y.T., S.-H. Lee, J.C. Lee, and D.H. Kim, 2003. Surface currents variability observed by HF radar off the Keum River in the west coast of Korea in summer, 2002. Proc. 12th PAMS/JECSS workshop, 7-6-1-4
  33. Son, Y-T., S.-H. Lee, C.-S. Kim, J.C. Lee and G-H. Lee, 2006. Surface current variability in the Keum River Estuary (South Korea) during summer 2002 as observed by high frequency radar and coastal monitoring buoy. Continental Shelf Res., (accepted)
  34. Soulsby, R. L., 1990. Tidal-current boundary layers, in The Sea, vol. 9, Ocean Engineering Science, 523-566
  35. Thompson, R.O.R.Y., 1983. Low-pass filters to suppress inertial and tidal frequencies. J Physical Oceanography. 13(6): 1077- 1083 https://doi.org/10.1175/1520-0485(1983)013<1077:LPFTSI>2.0.CO;2