A Tracer Study on Mankyeong River Using Effluents from a Sewage Treatment Plant

하수처리장 방류수를 이용한 추적자 시험: 만경강 유역에 대한 사례 연구

  • Kim Jin-Sam (School of Civil and Environmental Engineering, Kunsan National University) ;
  • Kim Kang-Joo (School of Civil and Environmental Engineering, Kunsan National University) ;
  • Hahn Chan (Yooshin Engineering Coperation) ;
  • Hwang Gab-Soo (School of Civil and Environmental Engineering, Kunsan National University) ;
  • Park Sung-Min (School of Civil and Environmental Engineering, Kunsan National University) ;
  • Lee Sang-Ho (Department of oceanography Kunsan National University) ;
  • Oh Chang-Whan (Department of Earth and Environmental Sciences) ;
  • Park Eun-Gyu (Department of Geology)
  • 김진삼 (군산대학교 토목환경공학부) ;
  • 김강주 (군산대학교 토목환경공학부) ;
  • 한찬 ((주) 유신 코퍼레이션) ;
  • 황갑수 (군산대학교 토목환경공학부) ;
  • 박성민 (군산대학교 토목환경공학부) ;
  • 이상호 (군산대학교 해양학과) ;
  • 오창환 (전북대학교 지구환경과학과) ;
  • 박은규 (경북대학교 지질학과)
  • Published : 2006.05.01

Abstract

We investigated the possibility of using effluents from a municipal sewage treatment plant (STP) as tracers a tracer for hydrologic studies of rivers. The possibility was checked in a 12-km long reach downstream of Jeonju Municipal Sewage Treatment Plant (JSTP). Time-series monitoring of the water chemistry reveals that chemical compositions of the effluent from the JSTP are fluctuating within a relatively wide range during the sampling period. In addition, the signals from the plant were observed at the downstream stations consecutively with increasing time lags, especially in concentrations of the conservative chemical parameters (concentrations f3r chloride and sulfate, total concentration of major cations, and electric conductivity). Based on this observation, we could estimate the stream flow (Q), velocity (v), and dispersion coefficient (D). A 1-D nonreactive solute-transport model with automated optimization schemes was used for this study. The values of Q, v, and D estimated from this study varied from 6.4 to $9.0m^3/sec$ (at the downstream end of the reach), from 0.06 to 0.10 m/sec, and from 0.7 to $6.4m^2/sec$, respectively. The results show that the effluent from a large-scaled municipal STP frequently provides good, multiple natural tracers far hydrologic studies.

본 연구에서는 도시하수처리장 방류수를 하천연구용 추적자로 이용할 수 있는지 여부를 검토하였다. 이 같은 연구는 전주하수처리장 처리수 방류지점 하류 12 km구간에 대해서 수행 되었다. 연속 수질조사 결과 당 하수처리장 방류수의 수질은 조사기간 동안 비교적 넓은 범위에서 변화되고 있음이 관찰되었다. 특히 염소이온농도, 황산이온농도, 총양이온 농도, 전기전도도 등과 같은 변수들은 하수처리장 방류수에서의 수질변화 양상이 방류지점 하류의 관측지점들에서도 시간차이를 두고 순차적으로 관찰되었으며, 이러한 관측결과를 바탕으로 하천의 유속(v), 유량(Q), 수리분산계수(D) 값을 유추해 낼 수 있었다. 본 연구를 위해서는 1차원 비반응성 이산-분산 모델을 자동최적화 기법으로 역산하는 방법이 이용되었다. 이 같은 방법을 통하여 추산된 최하류 지점의 유량은 조사기간동안 6.4에서 $9.0m^3/sec$ 까지 변화되는 것으로 나타났으며, 유속은 조사구간내에서 0.06에서 0.10 m/sec까지, 수리분산계수는 0.7에서 $6.4m^2/sec$까지 변화되는 것으로 나타났다. 본 연구결과는 대도시의 대규모하수처리장이 수문연구에 적합한 추적자들을 제공해줄 수 있다는 점을 보여 주는 것이다.

Keywords

References

  1. Bailey, T.E., C.A. McCullough and C.G Gunnerson, 1966. Mixing and dispersion studies in San Francisco Bay, Proceedings of the American Society of Civil Engineers, 92(SA5): 23-45
  2. Bohlke, J.K., R.L. Smith, M.A. Voytek, R.C. Antweiler, L.K. Smith, A.E. Laureen, and J.W. Harvey, 2000. In-stream nitrogen loss in nitrate-contaminated streams in the upper Illinois River basin, EOS Transactions, 81(48): F251
  3. Bradley, P.M., P.B. McMhon, and F.H. Chapelle, 1995. Effects of carbon and nitrate on denitrification in bottom sediments of an effluent-dominated river. Water Resources Research, 31: 1063-1068 https://doi.org/10.1029/94WR03351
  4. Brodrick, S.J., P. Cullen, and W. Maher, 1988. Denitrification in a natural wetland receiving secondary treated effluent. Water Research, 22: 431-439 https://doi.org/10.1016/0043-1354(88)90037-1
  5. Buchanan, T.J., 1964. Time-of-travel of soluble contaminants in streams, Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, 90(SA3): 1-12
  6. Eaton, A.D., L.S. Clesceri, and A.E. Greenberg, 1995. Standard Methods for the Examination of Water and Wastewater (19th ed.), APHA-AWWA-WEF, Washigton DC
  7. Fischer, H.B., E.J. List, R.C.Y. Koh, J. Imberger and N.H. Brooks, 1979. Mixing in Inland and Coastal Waters. Academic Press, New York
  8. Feurstein, D.L. and R.E. Selleck, 1963. Fluorescent tracers for dispersion measurements. Proceedings of the American Society of Civil Engineers, 89(SA4): 1-21
  9. Hearn, P.P., 1995. Controls on phosphorous mobility in the Potomic River near the Blue Plains Waste Water Treatment Plant. USGS Water Supply Paper 2231
  10. Jasper, W.S. 1988. Secondary Standard Potassium Chloride Conductivity Solutions at $25^{\circ}C$. Corporate Metrology Laboratory, YSI Inc., Ohio
  11. Jobson, H.E., 1996. Prediction of travel time and longitudinal dispersion in rivers and streams, USGS Water-Resources Investigations Report 96-4013
  12. Kilpatrick, F.A., 1993. Simulation of soluble waste transport and buildup in surface waters using tracers, USGS Techniques of Water-Resources Investigations, Book 3, chap. A20
  13. Kilpatrick, F.A. and J.F. Wilson Jr., 1989. Measurement of time of travel and dispersion in streams by dye tracing, USGS Techniques of Water-Resources Investigations, Book 3, Chapter A9
  14. Kilpatrick, F.A. and E.D. Cobb, 1985. Measurement of discharge using tracers, USGS Techniques of Water-Resources Investigations, Book 3, Chapter A16
  15. Kilpatrick, F.A. and K.R. Taylor, 1986. Applications of dispersion data, Water Resources Bulletin of the American Water Resources Association, 22: 537-548 https://doi.org/10.1111/j.1752-1688.1986.tb01906.x
  16. Kim, K., J.S. Lee, C-W. Oh, G.-S. Hwang, J. Kim, S. Yeo, and Y. Kim, S. Park, 2002. Inorganic chemicals in an effluent-dominated stream as indicators for chemical reactions and stream flows. Journal of Hydrology, 264: 147-156 https://doi.org/10.1016/S0022-1694(02)00074-4
  17. Martin, J.L. and S.C. McCutcheon, 1998. Hydrodynamic and transport for water quality modeling, Lewis Publishers, Boca Raton
  18. Lloyd, J.W. and J.A. Heathcote, 1985. Natural inorganic hydrochemistry in relation to groundwater. Clarendon Press, Oxford
  19. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, 1992. Numerical Recipes in FORTRAN, Cambridge University Press, Cambridge
  20. Jasper, W.S., 1988. Secondary Standard Potassium Chloride Conductivity Solutions at $25^{\circ}C$, Corporate Metrology Laboratory, YSI Inc., Ohio
  21. Rathbun, R.E., D.J. Schultz, D.W. Stephens and D.Y. Tai, 1977. Experimental modeling of the oxygen absorption characteristics of streams and rivers, Proceedings of the International Association for Hydraulic Research 17th Congress, 1: 483-490
  22. Spencer, E.A., and J.R Tudhope, 1958. A literature survey of the salt-dilution method of flow measurement. Institute of Water Engineers Journal, 12: 127-138
  23. Sumner, D.M., D.E. Rolston, and L.A. Bradner, 1998. Nutrient transport and transformation beneath an inflitration basin. Water Environment Research, 70: 997-1004 https://doi.org/10.2175/106143098X123327
  24. Taylor, K.R, R.W. James Jr. and B.M., Helinsky, 1986. Travel-time and dispersion in the Shenandoah River and its tributaries, Waynesboro, Virginia, to Harpers Ferry, West Virginia, USGS Water-Resources Investigations Report 86-4065
  25. Van Genuchten, M.T. and W.J. Alves, 1982. Analytical solutions of the one-dimensional convective-dispersive solute transport equation, U.S. Dep. of Agri. Tech. Bull. 1661
  26. Van Kessel, J.F., 1977. Removal of nitrate from effluent following discharge on surface water. Water Research, 11: 533-537 https://doi.org/10.1016/0043-1354(77)90041-0
  27. Wu, Y.C., W.F. Koch, W.J. Hamer and R.L. Kay, 1987. Review of elecrolytic conductance standards. Journal of Solution Chemistry, 16: 985-997 https://doi.org/10.1007/BF00652583
  28. Yotsukura, M. and F.A. Kilpatrick, 1973. Tracer simulation of soluble waste concentration, Proceedings of the American Society of Civil Engineers, 99(EE4): 499-515