A Numerical Study on the Progressive Brittle Failure of Rock Mass Due to Overstress

과지압으로 인한 암반의 점진적 취성파괴 과정의 수치해석적 연구

  • Published : 2006.06.01

Abstract

In rock mass subject to high in-situ stresses, the failure process of rock is dominated by the stress-induced fractures growing parallel to the excavation boundary. When the ratio of in situ stresses compared to rock strength is greater than a certain value, progressive brittle failure which is characterized by popping and spatting of rock debris occurs due to stress concentration. Traditional constitutive model like Mohr-Coulomb usually assume that the normal stress dependent frictional strength component and the cohesion strength component are constant, therefore modelling progressive brittle failure will be very difficult. In this study, a series of numerical analyses were conducted for surrounding rock mass near crude oil storage cavern using CW-FS model which was known to be efficient for modelling brittle failure and the results were compared with those of linear Mohr-Coulomb model. Further analyses were performed by varying plastic shear strain limits on cohesion and internal friction angle to find the proper values which yield the matching result with the observed failure in the oil storage caverns. The obtained results showed that CW-FS model could be a proper method to characterize essential behavior of progressive brittle failure in competent rock mass.

큰 초기응력을 받는 암반에서의 파괴 과정은 굴착경계에 평행하게 발생하는 응력 유도 균열에 의해 지배된다. 특히 지압의 절대크기가 암반 강도의 일정 비율 이상이 되면 응력 집중에 의한 암반의 취성 파괴를 유발하고, 이러한 현상은 터널 굴착 시 발생하는 파괴음과, 굴착면에 평행한 형태로 암편이 탈락하는 취성파괴 현상을 동반한다. Mohr-Coulomb과 같은 기존의 구성 모델은 일반적으로 마찰각과 점착력을 일정한 값으로 가정하므로, 점진적인 암반의 취성파괴 현상을 모사하기 어렵다. 본 논문에서는 일반적인 수치해석 코드에서 취성파괴를 잘 모의할 수 있는 것으로 알려진 CW-FS 모델을 사용하여 유류 저장공동 주변 암반에 대한 수치해석을 실시하고, 그 결과를 선형 Mohr-Coulomb 모델의 결과와 비교하였다. 또한 마찰각과 점착력 성분의 전단 소성변형률 한계를 변화시키면서 해석을 실시하여, 유류 저장공동에서 관찰된 취성파괴와 비슷한 양상을 보이는 해석 결과를 찾아보았다. 결과적으로 CW-FS 모델은 견고한 암반에서의 취성파괴를 모의하는데 있어 적절한 해석방법이라는 것을 알 수 있었다.

Keywords

References

  1. 양형식, 장명환, 2002, 암석파괴이론, 전남대학교 출판부, 277p
  2. Hajiabdolmajid, V., C.D Martin, and P.K. Kaiser, 2000, Modelling brittle failure of rock, Pacific Rocks 2000, Girard, Liebman, Breeds & Doe (eds), Balkerna, Rotterdam, 991-998
  3. Martin, C.D, P.K. Kaiser, and D.R. McCreath, 1999, Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Canadian Geotechnical Journal, 36(1), 136-151 https://doi.org/10.1139/cgj-36-1-136
  4. Hoek, E. P.K. Kaiser, and W.F. Bawden, 1995. Support of Underground Excavations in Hard Rock. A.A. Balkema, Rotterdam, 215p
  5. Martin, C.D., 1999, Presentation slide of Brittle rock failure and tunnelling in high stressed rock, Tunnel construction brittle rock, Edmonton, Canada
  6. Lockner, D.A., J.D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin, 1992, Observations of QuasiStatic Fault Growth from Acoustic Emissions, In B, Evans & T.-f. Wong (Edx.), Fault Mechanics and Transport Properties of Rocks, 3-31
  7. Martin, C.D. and N.A. Chandler, 1994, The progressive fracture of Lac du Bonnet granite, International Journal Rock Mechanics Mining Science & Geomechanics Abstracts, 31(6) 643-659 https://doi.org/10.1016/0148-9062(94)90005-1
  8. Diederichs, M.S., 1999, Instability of Hard Rockmasses : The Role of Tensile Damage and Relaxation, Ph. D. thesis, Dept. of Civil Engineering, University of Waterloo, Waterloo, Canada, 566p