FEM-based Seismic Reliability Analysis of Real Structural Systems

실제 구조계의 유한요소법에 기초한 지진 신뢰성해석

  • 허정원 (전남대학교 해양기술학부 해양공학) ;
  • Published : 2006.06.01

Abstract

A sophisticated reliability analysis method is proposed to evaluate the reliability of real nonlinear complicated dynamic structural systems excited by short duration dynamic loadings like earthquake motions by intelligently integrating the response surface method, the finite element method, the first-order reliability method, and the iterative linear interpolation scheme. The method explicitly considers all major sources of nonlinearity and uncertainty in the load and resistance-related random variables. The unique feature of the technique is that the seismic loading is applied in the time domain, providing an alternative to the classical random vibration approach. The four-parameter Richard model is used to represent the flexibility of connections of real steel frames. Uncertainties in the Richard parameters are also incorporated in the algorithm. The laterally flexible steel frame is then reinforced with reinforced concrete shear walls. The stiffness degradation of shear walls after cracking is also considered. The applicability of the method to estimate the reliability of real structures is demonstrated by considering three examples; a laterally flexible steel frame with fully restrained connections, the same steel frame with partially restrained connections with different rigidities, and a steel frame reinforced with concrete shear walls.

응답면기법, 유한요소법, 일차신뢰도법 그리고 반복 선형보간기법을 합리적으로 결합한 정교한 신뢰성해석 기법이 지진하중을 포함하는 단기 동적하중을 받는 복잡한 실제 비선형 동적구조계의 신뢰성 평가를 위하여 제안되었다. 기법은 하중 및 저항과 관련된 랜덤변수의 비선형성과 불확실성의 모든 중요 원천을 명시적으로 고려한다. 본 기법의 특징은 전통적 랜덤진동방법의 대안으로서 지진하중을 시간영역에서 적용하는 것이다. 실제 강프레임의 연결부에 대한 유연성을 표현하기 위하여 4-매개변수 리차드 모델을 사용하였다. 리차드 매개변수의 불확실성에 대한 고려도 알고리즘에 포함하였다. 다음으로 횡방향으로 유연한 강프레임을 철근콘크리트 전단벽으로 보강하였다. 균열 발생 후 전단벽에서의 강도저감 또한 고려되었다. 강절 연결부를 갖는 횡방향으로 유연한 강프레임, 각기 다른 강성의 부분강절 연결부를 갖는 강프레임, 그리고 콘크리트 전단벽으로 보강된 강프레임의 세 구조물을 고려함으로써 실제 구조물의 신뢰성평가를 위한 기법의 적용성을 검증하였다.

Keywords

References

  1. American Institute of Steel Construction (1994) Manual of Steel Construction: Load and Resistance Factor Design. Chicago. Illinois
  2. Bucher, C.G., Bourgund, U. (1990) A fast and efficient response surface approach for structural reliability problems. Structural Safety, 7, pp.57-66 https://doi.org/10.1016/0167-4730(90)90012-E
  3. Colson, A. (1991) Theoretical modeling of semirigid connections behavior. Journal of the Construction steel Research, 19, pp.213-224 https://doi.org/10.1016/0143-974X(91)90045-3
  4. Clough, R. W., Penzien. J. (1993) Dynamics of Structures 2nd Edition, McGraw-Hill, New York, N.Y
  5. El-Salti, M. K. (1992) Design of frames with partially restrained connections. Ph.D. Dissertation. Dept. Of Civil Engineering and Engineering Mechanics. The University of Arizona. Tucson. Arizona. U.S.A
  6. Gupta, A.K., Akbar, H. (1983) Cracking in reinforced concrete analysis. Journal of Structural Engineering, ASCE, 107 (ST1), pp.1735-1746
  7. Haldar, A., Gao, L. (1997) Reliability evaluation of structures using nonlinear SFEM. Uncertainty Modeling in Finite Element, Fatigue, and Stability of Systems. A. Haldar, A. Guran, and B.M. Ayyub, eds., World Scientific Publishing Co., River Edge, N.J., pp.23-50
  8. Haldar, A., Mahadevan, S. (2000) Probability. Reliability And Statistical Methods In Engineering Design. John Wiley & Sons, New York, N.Y
  9. Haldar, A., Nee, K. M. (1989) Elasto-Plastic Large Deformation Analysis of PR Steel Frames for LRFD. Computers and Structures, 31(5). pp.811-823 https://doi.org/10.1016/0045-7949(89)90215-0
  10. Huh, J. (2000) Nonlinear Structural Safety Assessment under Dynamic Excitation Using SFEM. Journal of the Computational Structural Engineering Institute of Korea, B(3), pp.373-384
  11. Huh, J., Haldar, A. (2001) Stochastic Finite-Element-Based Seismic Risk of Nonlinear Structures. Journal of Structural Engineering, ASCE, 127(3), pp.323-329 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(323)
  12. Huh, J., Haldar, A. (2002) Seismic reliability of non-linear frames with PR connections using systematic RSM. Probabilistic Engineering Mechanics, 17, pp.177-190 https://doi.org/10.1016/S0266-8920(02)00002-4
  13. Huh, J., Cho, H-N. (2001) Effect of Partially Restrained Connections on Seismic risk Evaluation of Steel Frames. Journal of the Computational Structural Engineering Institute of Korea. 14(4). pp.537-549
  14. Inoue, N., Yang, K., Shibata, A. (1997) Dynamic nonlinear analysis of reinforced concrete shear wall by finite element method with explicit analytical procedure. Earthquake Engineering and Structural Dynamics, 26, pp.967-986 https://doi.org/10.1002/(SICI)1096-9845(199709)26:9<967::AID-EQE689>3.0.CO;2-T
  15. Kondoh, K.. Atluri, S. N. (1987) Large-deformation, elasto-plastic analysis of frames under nonconservative loading. using explicitly derived tangent stiffnesses based on assumed stresses. Computational Mechanics, 2(1), pp.1-25
  16. Lee, S.Y. (2000) Static and dynamic reliability analysis of frame and shear wall structural systems. Ph.D. Dissertation. Dept. of Civil Engineering and Engineering Mechanics, The University of Arizona. Tucson, Arizona, U.S.A
  17. Lefas, D., Kotsovos, D. & Ambraseys, N. (1990) Behavior of reinforced concrete structural walls: strength. deformation characteristics. and failure mechanism. ACI Structural Journal, 87(1), pp.23-31
  18. Leger, P., Dussault, S. (1992) Seismic energy dissipation in MDOF structures. Journal of Structural Engineering, ASCE, 118(5), pp.1251-1269 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1251)
  19. Liauw, T.C., Kwan, K.H. (1985) Static and cyclic behaviors of multistory infilled frames with different interface conditions. Journal of Sound and Vibration, 99(2), pp.275-283 https://doi.org/10.1016/0022-460X(85)90363-3
  20. Raiashekhar, M.R., Ellingwood, B. R. (1993) A new look at the response surface approach for reliability analysis. Structural Safety, 12, pp.205-220 https://doi.org/10.1016/0167-4730(93)90003-J
  21. Richard, R. M., Abbott. B.J. (1975) Versatile elastic-plastic stress-strain formula. Journal of Engineering Mechanics, ASCE, 101(EM4), pp.511-515
  22. Shi, G., Atluri, S. N. (1988) Elasto-plastic large deformation analysis of space frames. Int. J. for Num. Methods in Eng., 26. pp.589-615 https://doi.org/10.1002/nme.1620260306
  23. Vecchio. F.J. (1989) Nonlinear finite element analysis of reinforced concrete membranes. ACI Structural Journal, 8(1), pp.26-35