DOI QR코드

DOI QR Code

Effects of Nitrogen and Phosphorus Fertilization on Nutrient Dynamics and Litterfall Production of Pinus rigida and Larix kaempferi

질소와 인 시비가 리기다소나무와 낙엽송의 낙엽 생산량 및 양분 동태에 미치는 영향

  • Lee, Im-Kyun (Department of Forest Environment, Korea Forest Research Institute) ;
  • Son, Yow-Han (Division of Environmental Science and Ecological Engineering, Korea University)
  • 이임균 (국립산림과학원 산림환경부) ;
  • 손요환 (고려대학교 환경생태공학부)
  • Published : 2006.06.01

Abstract

Effects of nitrogen and phosphorus fertilization on nutrient dynamics and litterfall production were determined in adjacent 41-year-old plantations of Pinus rigida Miller and Larix kaempferi Gordon on a similar soil in Yangpyeong, Gyeongggi Province. Litterfall production were significantly different among sampling dates and between the tree species, whereas it was not significantly different among the treatments. Total annual litterfall production was 6,377 kg/ha for P. rigida and 4,778 kg/ha for L. kaempferi, respectively. Litterfall nutrient concentrations of L. kaempferi were higher than those of P. rigida. For both tree species, litterfall nutrient concentrations were highest in summer when the least litterfall production occurred, and lowest in late-autumn when the greatest litterfall production occurred, except for Ca in the L. kaempferi stand. The amount of total organic matter in the forest floor of P. rigida and L. kaempferi plantations were 24,296 kg/ha and 10,763 kg/ha, respectively. Forest floor N and P contents were 126, 10 kg/ha for P. rigida and 102, 8 kg/ha for L. kaempferi, respectively.

본 연구는 경기도 양평지역 내 서로 인접하여 있고 동일한 입지 환경 위에 생육하고 있는 41년생 리기다소나무와 낙엽송 조림지를 대상으로 질소와 인 시비처리가 리기다소나무와 낙 엽송의 낙엽 생산량 및 양분 동태에 미치는 영향을 구명하기 위하여 수행되었다. 낙엽 생산량은 시료채취 시기와 수종간에 통계적으로 유의성이 인정된 반면, 시비 처리간에는 유의적인 차이가 없었던 것으로 나타났다. 연간 낙엽 생산량은 리기다소나무가 6,377 kg/ha 그리고 낙엽송이 4,778 kg/ha이었다. 낙엽 내 양분농도는 낙엽송이 리기다소나무에 비해 높았으며, 두 수종 모두 처리구간에 유의적인 차이가 있는 것으로 나타났다. 또한 낙엽 내 양분 농도는 낙엽송에서의 Ca 함량을 제외하고 두 수종 모두 연중 낙엽 생산량이 가장 많았던 늦가을에서 가장 낮았으며, 연중 낙엽 생산량이 가장 적었던 여름에 가장 높았던 것으로 나타났다. 또한 리기다소나무와 낙엽송 임분 임상의 총 유기물 함량은 24,296 kg/ha, 그리고 10,763 kg/ha였으며, 임상 내질소와 인의 함량은 리기다소나무가 126, 10 kg/ha, 그리고 102, 8 kg/ha로 각각 나타났다.

Keywords

References

  1. 김재근, 장남기. 1989. 관악산에 식재된 리기다소나무림에서의 낙엽의 생산과 분해. 한국생태학회지 12(1): 9-20
  2. 김종성, 손요환, 임주훈, 김진수. 1996. 리기다소나무와 낙엽송 인공조림지의 지상부 생체량, 질소와 인의 분포 및 낙엽에 관한 연구. 한국임학회지 85(3): 416-425
  3. 김종성. 1995. 양평지역 리기다소나무, 낙엽송, 졸참나무림의 물질 생산과 질소와 인의 분포에 관한 연구(박사학위논문). 고려대 학교, 서울
  4. 문형태, 주환택. 1994. 상수리나무림과 리기다소나무림의 낙엽생산과 분해. 한국생태학회지 17(3): 345-353
  5. 박봉규, 김준기, 장남기. 1970. 광릉 및 오대산의 주요 산림식물의 에너지 및 양분순환에 대하여. 한국생활과학연구원논총 4: 49-59
  6. 이인숙. 1980. 남한의 산림생태계에 있어서의 낙엽의 분해모델(박사학위논문). 이화여자대학교, 서울
  7. 이임균, 손요환. 2004. 질소와 인 시비가 리기다소나무와 낙엽송 침엽 및 소지에서의 부위별 양분의 계절적 변화 및 재분배에 미치는 영향. 한국생태학회지 27(4): 199-210
  8. Binkley D. 1986. Forest Nutrition Management. John Wiley & Sons, New York. p 290
  9. Bray JR, Gorham E. 1964. Litter production in forest of the world. Adv Ecol Res 2: 101-158 https://doi.org/10.1016/S0065-2504(08)60331-1
  10. Chang NK, Kim IJ. 1983. A study of the matter production and decomposition of Quercus serrata and Carpinus laxiflora forests at Piagol in Mt. Jiri. Korean J Ecol 6(3): 198-207
  11. Chang NK, Ko MH. 1982. Turnover rates of mineral nutrients of litters under Pinus koraiensis and Pinus rigida forests. Korean J Ecol 5(1): 28-33
  12. Cole DW, Rapp M. 1981. Elemental cycling in forest ecosystems. p. 341-409. In : Reichle, D.E. (ed.). Dynamic Properties of Forest Ecosystems. IBP 23. Cambridge University Press, Cambridge
  13. Fahey TJ. 1983. Nutrient dynamics of aboveground detritus in lodgepole pine (Pinus contorta spp. latifolia) ecosystems, southeastern Wyoming. Ecol Monogr 53: 51-72 https://doi.org/10.2307/1942587
  14. Foster NW, Morrison IK. 1983. Nutrient recycling with respect to whole tree harvesting in natural stands. Pages 60-65. In : Robertson, D. (ed.). Proc. Coord. Sixth International FPRS Industrial Wood Energy Forum 1982. Vol. 1. Proc. 7334, Wisconsin, D.C., 8-10 Mar. 1982. For. Prod. Res. Soc., Madison, Wisconsin. 53705
  15. Fyles JW, Cote B, Courchesne F, Hendershot, WH. 1994. Effects of base cation fertilization on soil and foliage nutrient concentrations and litter-fall and throughfall nutrient fluxes in a sugar maple forest. Can J For Res 24: 542-549 https://doi.org/10.1139/x94-071
  16. Gholz HL, Perry CS, Cropper Jr WP, Hendry LC. 1985. Litterfall, decomposition, and nitrogen and phosphorus dynamics in a chronosequence of slash pine (Pinus elliotii) plantations. Forest Sci. 31: 463-478
  17. Gower ST, Son Y. 1992. Differences in soil and leaf litterfall nitrogen dynamics for five forest plantations. Soil Sci Soc Am J 56: 1959- 1966 https://doi.org/10.2136/sssaj1992.03615995005600060051x
  18. Hart SC, Firestone MK, Paul EA. 1992. Decomposition and nutrient dynamics of ponderosa pine needles in a Mediterranean-type climate. Can J For Res 22: 306-314 https://doi.org/10.1139/x92-040
  19. Howerd DM, Howerd PTA. 1974. Microbial decomposition of trees and shrub leaf litter. Oikos 25: 341-352 https://doi.org/10.2307/3543954
  20. John MK. 1970. Colorimetric determination of phosphorous in the soil and plant material with ascorbic acid. Soil Sci 109: 214-220 https://doi.org/10.1097/00010694-197004000-00002
  21. Keenan RJ, Prescott CE, Kimmins JP. 1995. Litter production and nutrient resorption in western red cedar and western hemlock forests on northern Vancouver Island, British Columbia. Can J For Res 25: 1850-1857 https://doi.org/10.1139/x95-199
  22. Kim DY. 1996. Changes in nutrient distribution, cycling, and availability in aspen stands after an intensive harvesting. J Kor For Soc 85(4): 656-666
  23. Kim DY, Lee DK. 1998. Distribution of ecosystem nutrients in pitch pine, korean pine, larch and oak forests in Kyunggi-do, Korea. Proceedings of IUFRO Inter-Divisional Seoul Conference. Oct. 12-17. Seoul, Korea. pp 330-339
  24. Lea A, Ballard R. 1982. Relative effectiveness of nutrient concentrations in living foliage and needle fall at predicting response of loblolly pine to N and P fertilization. Can J For Res 12: 713-717 https://doi.org/10.1139/x82-107
  25. Lousier JD, Parkinson D. 1975. Litter decomposition in a cool temperate deciduous forest. Can J Bot 54: 419-436
  26. Miller HG, Miller JD. 1976. Analysis of needlefall as a means of assessing nitrogen status in pine. Forestry 49: 57-61 https://doi.org/10.1093/forestry/49.1.57
  27. Minderman G. 1968. Addition, decomposition and accumulation of organic matter in forests. J Ecol 2: 355-362
  28. Olsen JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322-331 https://doi.org/10.2307/1932179
  29. Ovington JD, Heitkamp D. 1960. Accumulation of energy in forest plantations in Britain. J Ecol 48: 639-646 https://doi.org/10.2307/2257339
  30. Park GS. 1997. Soil chemistry changes after N, P, and K fertilization in a Willow (Salix spp.) bioenergy plantation. J Kor For Soc 86 (3): 311-318
  31. Rawat L, Singh SP. 1995. Leaf litter decomposition and nitrogen concentration in decomposing leaves of a Quercus semecarpifolia (Smith) forest stand of Kumaun Himalaya. Commun. Soil Sci Plant Anal. 26(3/4): 411-424 https://doi.org/10.1080/00103629509369307
  32. SAS. 1988. SAS/STAT User's Guide, 6.03 edition, SAS Institute, Cary, NC, USA
  33. Sharma E, Ambasht RS. 1987. Litterfall, decomposition and nutrient release in an age sequence of Alnus nepalensis plantation stands in the eastern Himalaya. J Ecol 75: 997-1010 https://doi.org/10.2307/2260309
  34. Son Y, Lee IK. 1997. Soil nitrogen mineralization in adjacent stands of larch, pine and oak in central Korea. Ann Sci For 54: 1-8 https://doi.org/10.1051/forest:19970101
  35. Turner J, Lambert MJ. 1986. Fate of applied nutrients in a long-term superphosphate trial in Pinus radiata. Plant Soil 93: 373-382 https://doi.org/10.1007/BF02374288
  36. Twilley RR, Lugo AE, Patterson-Zucca C. 1986. Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67: 670-683 https://doi.org/10.2307/1937691
  37. Upadhyay VP. 1988. Pattern of immobilization and release of nitrogen in decomposing leaf litter in Himalayan forest. Proc Indian Acad Sci (Plant Sci.) 98: 215-226
  38. Van Cleve K, Noonan LL. 1975. Litterfall and nutrient cycling in the forest floor of birch and aspen stands in interior Alaska. Can J For Res 5:626-639 https://doi.org/10.1139/x75-089
  39. Vitousek PM. 1982. Nutrient cycling and nutrient use efficiency. Am Nat 119: 553-572 https://doi.org/10.1086/283931
  40. Vogt KA, Grier CC, Vogt DJ. 1986. Production, turnover, and nutrient dynamics of above- and below-ground detritus of world forest. Adv Ecol Res 15: 303-377 https://doi.org/10.1016/S0065-2504(08)60122-1
  41. Wilde SA, Corey RB, Iyer JG, Vioigt GK. 1979. Soil and Plant Analysis for Tree Culture. Oxford and IBH Publishing, New Delhi. p 224

Cited by

  1. Soil carbon storage, litterfall and CO2 efflux in fertilized and unfertilized larch (Larix leptolepis) plantations vol.23, pp.4, 2008, https://doi.org/10.1007/s11284-007-0436-2
  2. The influence of black locust (Robinia pseudoacacia) flower and leaf fall on soil phosphate vol.341, pp.1-2, 2011, https://doi.org/10.1007/s11104-010-0642-5