DOI QR코드

DOI QR Code

Atmospheric Acid Deposition : Nitrogen Saturation of Forests

대기 산성 강하물 : 삼림의 질소 포화

  • Kim, Joon-Ho (School of Life Sciences, Seoul Natl. University/ National Academy of Sciences, ROK)
  • 김준호 (서울대학교 생명과학부/대한민국 학술원)
  • Published : 2006.06.01

Abstract

Atmospheric Acid Deposition: Nitrogen Saturation of Forests: Volume weighted annual average wet deposition of nitroge at 33 sites in Korea during 1999-2004 ranged 7.28 to $21.05kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$ with average $12.78kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$, which values are similar level with nitrogen deposition of Europe and North America. The temperate forests that suffered long-term high atmospheric nitrogen deposition are gradually saturated with nitrogen. Such nitrogen saturated forest watersheds usually leach nitrate ion ($NO_3^-$) in stream water and soil solution. It may be likely that Korean forest ecosystems are saturated by much nitrogen deposition. In leaves with nitrogen saturation ratios of N/P, N/K and N/Mg are so enhanced that mineral nutrient system is disturbed, suffered easily frost damage and blight disease, reduced fine-root vitality and mycorrhizal activity. Consequently nitrogen saturated forests decrease primary productivity and finally become forest decline. Futhermore understory species are replaced the nitrophobous species by the nitrophilous one. In soil with nitrogen saturation uptake of methane ($CH_4$) is reduced and emission of nitrogen monoxide (NO) and nitrous oxide ($N_{2}O$) are increased, which gases are greenhouse gas accelerating global warming.

대기 산성 강하물 : 삼림의 질소 포화 한국의 연평균 습성 질소 강하량은 12.78(범위: $7.28{\sim}21.05)\;kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$이고, 이것에 건성 질소 강하량(43%)을 합하여 추정한 총질소 강하량은 18.26(10.41-30.10) $kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$이 된다. 이 질소 강하량은 유럽과 북미 북동부의 질소 강하량과 비슷한 수준이다. 대기 질소 강하량이 많은 온대 삼림은 질소로 포화된다. 질소로 포화된 삼림은 계류수와 토양에 질산이온 ($NO_3^-$)과 질산태질소/암모늄태질소이($NO_{3}^{-}-N/NH_{4}^{+}-N$)의 비가 높아지고, 잎의 질소 농도가 높아지므로 N/P비, N/K비 및 N/Mg 비가 높아지는 것으로 보아 무기 영양소 교란이 일어나며, 상해와 병해에 걸리기 쉬워지고 세근과 근균의 활성이 낮아짐으로써 생산성이 낮아진다. 그러고 혐질소성 종이 호질소성 종에 의하여 대치된다. 질소로 포화된 토양에서는 온실가스인 메탄($CH_4$)의 흡수가 감소되고 일산화질소 (NO)와 아산화질소 ($N_{2}O$)의 배출이 증가되어 지구온난화를 촉진할 수 있다. 이 종설은 한국의 33장소에서 6년 동안 ($1999{\sim}2004$) 측정한 부피가중 연평균 습성 질소 강하량이 삼림의 질소 포화 수준에 달하고, 광릉시험림분수계와 그 밖의 삼림 계류수의 $NO_3$ 유출량으로 미루어 보아 한국의 삼림에 질소 포화의 징후가 나타났음을 제시하며, 문헌 자료를 통해서 외국의 삼림에서 일어나는 질소 포화의 징후를 체계적으로 논하는 데 목적이 있다.

Keywords

References

  1. 김준호. 2005a. 자연생태계에 미치는 산성강하물의 영향. 학술원논문집, 자연과학편 44: 139-218
  2. 김준호. 2005b. 대기산성강하물: 한국과 세계의 산성비 실태. 한생태지. 28: 169-180
  3. 김준호. 2005c. 대기산성강하물: 토양과 삼림생태계의 반응. 한생태지. 28: 417-431
  4. 유영한, 김준호, 문형태, 이창석. 2002. 산림 소유역 생태계에서 질소와 황의 유입량, 유출량과 물질수지. 한생태지. 25: 119-125
  5. 유영한. 1994. 광릉의 활엽수림과 침엽수림 소유역 생태계 내 무기 영양소의 유입과 유출. (박사학위논문). 서울대학교, 서울
  6. 이영희. 2001. 한반도에서의 질소침착량의 추정. (박사학위논문). 서울대학교, 서울
  7. 이천용, 원형규. 1994. 산림유역 내 계류수질의 변화실태. 임업정보 34: 21-23
  8. Aber JD, Magill A, Boone R. 1993. Plant and soil responses to chronic nitrogen additions at the Harvard forest, Massachusetts. Ecol Appl 3: 156-166 https://doi.org/10.2307/1941798
  9. Aber JD, Magill A, McNulty SG, Boone RD, Nadelhoffer KJ, Downs M, Hallett R. 1995. Forest biogeochemistry and primary production altered by nitrogen. Water Air Soil Poll 85: 1665-1670 https://doi.org/10.1007/BF00477219
  10. Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W. Rustad L, Fernandez I. 1998. Nitrogen saturation in temperate forest ecosystems. BioScience 48: 921-934 https://doi.org/10.2307/1313296
  11. Aber JD, Nadelhoffer KJ, Steudler P, Melillo M. 1989. Nitrogen saturation in northern forest ecosystems. Bioscience 39: 378-386 https://doi.org/10.2307/1311067
  12. Akiyama H, McTaggart IP, Ball BC, Scott A. 2004. $N_2O$, NO, and $NH_3$ emission from soil after the application of organic fertilizers, urea and water. Water Air Soil Poll 156: 113-129 https://doi.org/10.1023/B:WATE.0000036800.20599.46
  13. Berdèn M, Nilsson SI. 1996. Influence of added ammonium sulfate on the leaching of aluminium, nitrate and sulphate - a laboratory experiment. Water Air Soil Poll 87: 1-22 https://doi.org/10.1007/BF00696825
  14. Bergholm J, Berggren D, Alavi G. 2003. Soil acidification induced by ammonium sulphate addition in a Norway spruce forest in Southwest Sweden. Water Air Soil Poll 148: 87-109 https://doi.org/10.1023/A:1025449810185
  15. Bergholm J, Majdi H. 2001. Accumulation of nutrients in above and below ground biomass in response to ammonium sulphate addition in a Norway spruce stand in Southwest Sweden. Water Air Soil Poll 130: 1049-1054 https://doi.org/10.1023/A:1013912410069
  16. Bergkrist B, Falkeson L. 1992. Soil acidification and element fluxes of a Fagus sylvatica forest as influenced by simulated nitrogen deposition. Water Air Soil Poll 65: 111-133 https://doi.org/10.1007/BF00482753
  17. Bredemeier M, Dahrenbusch A, Murach D. 1995. Response of soil water chemistry and fine-roots to clean rain in a spruce forest ecosystem at Solling, FRG. Water Air Soil Poll 85: 1605-1611 https://doi.org/10.1007/BF00477210
  18. Bytnerowicz A, Fenn ME. 1996. Nitrogen deposition in California forests: a review. Environ Poll 92: 127-146 https://doi.org/10.1016/0269-7491(95)00106-9
  19. Campbell JL, Hornbeck JW, Mitchell MJ, Adams MB, Castro MS, Driscoll CT, Kahl JS, Kochenderfer JM, Likens GE, Lynch JA, Murdoch PS, Nelson SJ, Shanley JB. 2004. Input-output budgets of inorganic nitrogen for 24 forest watersheds in the northeastern United States: a review. Water Air Soil Poll 151: 373-396 https://doi.org/10.1023/B:WATE.0000009908.94219.04
  20. Ceplecha ZL, Waskom RM, Bauder TA, Sharkoff JL, Khosla R. 2004. Vulnerability assessments of Colorado ground water to nitrate contamination. Water Air Soil Poll 159: 373-394 https://doi.org/10.1023/B:WATE.0000049188.73506.c9
  21. Cho K-H, Kim J-H. 1989. A comparison of nitrogen cycling among young Pinus koraiensis plantations of different ages. Kor J Ecol 12: 245-256
  22. Christ M, Zhang Y, Likens GE, Driscoll CT. 1995. Nitrogen retention capacity of a northern hardwood forest soil under ammonium sulfate additions. Ecol. Appl. 5: 802-812 https://doi.org/10.2307/1941988
  23. Corre MD, Beese FO, Brumme R. 2003. Soil nitrogen cycle in high nitrogen deposition forest: changes under nitrogen saturation and liming. Ecol Appl 13: 287-298 https://doi.org/10.1890/1051-0761(2003)013[0287:SNCIHN]2.0.CO;2
  24. David MB, Cupples AM, Lawrence GB, Shi G, Vogt K, Wargo PM 1998. Effect of chronic nitrogen additions on soil nitrogen fractions in red spruce stands. Water Air Soil Poll 105: 183-192 https://doi.org/10.1023/A:1005012400047
  25. Davidson EA, Hart SC, Firestone MK. 1992. Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73: 1148-1156 https://doi.org/10.2307/1940665
  26. Davidson EA, Matson PA, Vitousek PM, Riley R, Dunkin K, Garćìa- Mendes G, Maass JM. 1993. Processes regulating soil emissions of NO and $N_2O$ in a seasonally dry tropical forest. Ecology 74: 130-139 https://doi.org/10.2307/1939508
  27. de Vries W. 1993. Average critical loads for nitrogen and sulfur and its use in acidification abatement policy in the Netherlands. Water Air Soil Poll 68: 399-434 https://doi.org/10.1007/BF00478466
  28. Diese NB, Wright RF. 1995. Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manag 71: 153-161 https://doi.org/10.1016/0378-1127(94)06092-W
  29. Durka W, Schulze E-D, Gebauer G, Voerkelius S. 1994. Effects of forest decline on uptake and leaching of deposited nitrate determined from $^{15}N$ and $^{18}O$O measurements. Nature 372: 765-767 https://doi.org/10.1038/372765a0
  30. Emmett BA, Stevens P, Reynolds B. 1995. Factors influencing nitrogen saturation in Stika spruce stands in Wales, UK. Water Air Soil Poll 85: 1629-1634 https://doi.org/10.1007/BF00477213
  31. Emmett BA. 1999. The impact on nitrogen on forest soils and feedbacks on tree growth. Water Air Soil Poll 116: 65-74 https://doi.org/10.1023/A:1005209622313
  32. Feger KH. 1992. Nitrogen cycling in two Norway spruce (Picea abies) ecosystems and effects of a $(NH_4)_2SO_4$ addition. Water Air Soil Poll 61: 295-307 https://doi.org/10.1007/BF00482612
  33. Fenn ME, Kiefer JW. 1999. Throughfall deposition of nitrogen and sulfur in Jeffrey pine forest in the San Gabriel Mountains, southern California. Environ Poll 104: 179-187 https://doi.org/10.1016/S0269-7491(98)00195-X
  34. Flückiger W, Braun S. 1999. Nitrogen and its effect on growth, nutrient status and parasite attacks in beech and Norway spruce. Water Air Soil Poll 116: 99-110 https://doi.org/10.1023/A:1005298609109
  35. Galloway, J.N. 1995. Acid deposition: perspective in time and space. Water Air Soil Poll 85: 15-24 https://doi.org/10.1007/BF00483685
  36. Glatzel G. 1990. The nitrogen status of Austrian forest ecosystems as influenced by atmospheric deposition, biomass harvesting and lateral organomass exchange. Plant Soil 128: 67-74 https://doi.org/10.1007/BF00009397
  37. Gundersen P. 1995. Nitrogen deposition and leaching in European forest - Preliminary results from a data compilation. Water Air Soil Poll 85: 1179-1184 https://doi.org/10.1007/BF00477141
  38. Han JS, Cheong IR, Park CJ, Park JD, Cheong DU, Kim SY, Ahn JY, Cheong IU, Cho CR, Kim JH. 2000. Evaluation of acid deposition and impact assessment in Korea (II). Natl Inst Environ Res pp 1-127. (in Korean with English summary)
  39. Han JS, Choi YI, Park CJ, Noh HR, Kim BK, Kim SY, Ahn JY, Kang CK, Cheong IU, Lee JC. 1999. Evaluation of acid deposition and impact assessment in Korea (I). Natl Inst Environ Res p 136. (in Korean with English summary)
  40. Han JS, Hong YD, Park CJ, Park JD, Cheong DU, Kong BJ, Kim SY, Ahn JY, Cheong IU, Cho CR, Kim JH, Jin KS, Lee DG. 2001. Evaluation of acid deposition and impact assessment in Korea (III). Natl Inst Environ Res pp 15-118. (in Korean with English summary)
  41. Han JS, Kong BJ, Hong YS, Lee MD, Lee SD, Choi JS, Ahn JY, Shin SA, Lee SJ, Lee DG. 2004. Acid deposition monitoring and impact assessment (1). Natl Inst Environ Res p 157. (in Korean with English summary)
  42. Han JS, Sheu CY, Kong BJ, Hong YD, Lee SD, Choi JS, Ahn JY, Lee SJ, Lee DG. 2003. Evaluation of acid deposition and impact assessment in Korea (V). Natl Inst Environ Res pp 1-110. (in Korean with English summary)
  43. Han JS, Sheu CY, Kong BJ, Park JD, Lee SD, Lee SJ, Lee DG. 2002. Evaluation of acid deposition and impact assessment in Korea (IV). Natl Inst Environ Res pp 19-82. (in Korean with English summary)
  44. Harriman R, Curtis C, Edwards AC. 1998. An empirical approach for assessing the relationship between nitrogen deposition and nitrogen leaching from upland catchments in the United Kingdom using runoff chemistry. Water Air Soil Poll 105: 193-203 https://doi.org/10.1023/A:1005041206407
  45. Harriman R. 1978. Nutrient leaching from fertilized forest watersheds in Scotland. J Appl Ecol 15: 933-942 https://doi.org/10.2307/2402788
  46. Hedin LO, Armesto JJ, Johnson AH. 1995. Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76: 493-509 https://doi.org/10.2307/1941208
  47. Hendzel LL, Matthews CJD, Venkiteswaran JJ, St. Louis VL, Burton D, Joyce EM, Bodaly RA. 2005. Nitrous oxide fluxes in three experimental boreal forest reservoirs. Environ Sci Technol 39: 4353-4360 https://doi.org/10.1021/es049443j
  48. Hong B, Swaney DP, Woodbury PB, Weinstein DA. 2005. Long-term nitrate export pattern from Hubbard Brook watershed 6 driven by climate variation. Water Air Soil Poll 160: 293-326 https://doi.org/10.1007/s11270-005-2831-z
  49. Hrka, Z. 2004. Changes in acid atmospheric deposition in Krušné Mts. and Sumava (Czech Republic) and their impact on groundwater quality. Water Air Soil Poll 157: 163-178 https://doi.org/10.1023/B:WATE.0000038885.42457.0f
  50. Hunt HW, Ingham ER, Coleman DC, Elliott ET, Reid CPR. 1988. Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology 69: 1009-1016 https://doi.org/10.2307/1941256
  51. Hüttl RF. 1990. Nutreint supply and fertilizer experiments in view of N saturation. Plant Soil 128: 45-58 https://doi.org/10.1007/BF00009395
  52. Johannes AH, Altwicker ER, Clesceri NL. 1985. The integrated lakewatershed acidification study: atmospheric inputs. Water Air Soil Poll 26: 339-353
  53. Kahl JS, Norton SA, Fernandez IJ, Nadelfoffer KJ, Driscoll CT, Aber JD. 1993. Experimental inducement of nitrogen saturation at the watershed scale. Environ Sci Technol 27: 565-566 https://doi.org/10.1021/es00040a017
  54. Kawakami T, Honoki H, Yasuda H. 2001. Acidification of a small stream on Kureha hill caused by nitrate leached from a forested watershed. Water Air Soil Poll 130: 1097-1102 https://doi.org/10.1023/A:1013998832359
  55. Koerselman W, Meuleman AFM. 1996. The vegetation N:P ration: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33: 1441-1450 https://doi.org/10.2307/2404783
  56. Koopmans CJ, van Dam D. 1998. Modelling the impact of lowered atmospheric nitrogen deposition on a nitrogen saturated forest ecosystem. Water Air Soil Poll 104: 181-203 https://doi.org/10.1023/A:1004992614988
  57. Kwak Y-S, Kim J-H. 1992. Nutrient cyclings in Mongolian oak (Quercus mongolica) forest. Kor J Ecol 15: 35-46
  58. Lawrence GB, David MB. 1997. Response of aluminum solubility to elevated nitrification in soil of red spruce stand in eastern Maine. Environ Sci Technol 31: 825-830 https://doi.org/10.1021/es960515j
  59. Lilleskov EA, Fahey TJ, Lovett GM. 2001. Ectomycorrhizal fungal aboveground community change over a atmospheric nitrogen deposition gradient. Ecol Appl 11: 397-410 https://doi.org/10.1890/1051-0761(2001)011[0397:EFACCO]2.0.CO;2
  60. Lovett GM, Rueth H. 1999. Soil nitrogen transformations in beech and maple stands along a nitrogen deposition gradient. Ecol Appl 9: 1330-1344 https://doi.org/10.1890/1051-0761(1999)009[1330:SNTIBA]2.0.CO;2
  61. Lovett GM, Weathers KC, Sobczak WV. 2000. Nitrogen saturation and retention in forested watersheds of the Catskill Mountains, New York. Ecol Appl 10: 73-84 https://doi.org/10.1890/1051-0761(2000)010[0073:NSARIF]2.0.CO;2
  62. Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA. 1997. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol Appl 7: 402-415 https://doi.org/10.1890/1051-0761(1997)007[0402:BROFET]2.0.CO;2
  63. Majdi H, Persson H. 1995. Effects of ammonium sulphate application on the chemistry of bulk soil, rhizosphere, fine roots and fineroot distribution in a Picea abies (L.) Karst stand Plant Soil 168-169: 151-160 https://doi.org/10.1007/BF00029323
  64. Majdi H, Rosengren-Brinck U. 1994. Effects of ammonium sulphate application on rhizosphere, fine-root and needle chemistry in a Picea abies (L.) Karst stand Plant Soil 162: 71-80 https://doi.org/10.1007/BF01416091
  65. Mälkönen E. 1990. Estimation of nitrogen saturation on the basis of long-term fertilization experiment. Plant Soil 128: 75-82 https://doi.org/10.1007/BF00009398
  66. McDowell WH, Currie WS, Aber JD, Yano Y. 1998. Effects of chronic nitrogen amendment on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Poll 105: 175-182 https://doi.org/10.1023/A:1005032904590
  67. Miller HG, Cooper JM, Miller JD. 1976. Effect of nitrogen supply on nutrients in litter fall and crown leaching in a stand Corsican pine. J Appl Ecol 13: 233-248 https://doi.org/10.2307/2401943
  68. Miller HG, Miller JD. 1976. Effect of nitrogen supply on net primary production in Corsican pine. J Appl Ecol 13: 249-256 https://doi.org/10.2307/2401944
  69. Mooney HA, Vitousek PM, Matson PA. 1987. Exchange of materials between terrestrial ecosystems and the atmosphere. Science 238: 926-932 https://doi.org/10.1126/science.238.4829.926
  70. Mun HT, Kim CM, Kim J-H. 1977. Distribution and cyclings of nitrogen, phosporus and potassium in Korean alder and oak stands. Kor J Bot 20: 109-118
  71. Nadelhoffer KJ, Downs MR, Fry B. 1999. Sinks for $^{15}N$-enriched additions to an oak forest and a red pine plantation. Ecol Appl 9: 72- 86 https://doi.org/10.1890/1051-0761(1999)009[0072:SFNEAT]2.0.CO;2
  72. Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonass OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RW. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145-148 https://doi.org/10.1038/18205
  73. Nilsson J, Grennfelt P. 1988. Workshop report. In: Critical loads for sulphur and nitrogen. Report from a workshop held at Skokloster, Sweden, March 1988 (Nilsson J, Grennfelt P, eds). Nordic Council of Ministry and the United Nations Economic Commission for Europe. Stockholm, Sweden pp. 7-32
  74. Nilsson L-O, Wiklund K. 1995. Indirect effects of N and S deposition on a Norway spruce ecosystem. An uptake of findings within the Skogaby project. Water Air Soil Poll 85: 1613-1622 https://doi.org/10.1007/BF00477211
  75. Nilsson L-O, Wiklund K. 1992. Influence of nutrient and water stress on Norway spruce production in South Sweden - The role of air pollutants. Plant Soil 143: 251-265
  76. Nilsson L-O, Wiklund K. 1994. Nitrogen uptake in a Norway spruce stand following ammonium sulphate application, fertigation, irrigation, drought and nitrogen-free-fertilization. Plant Soil 164: 221- 229 https://doi.org/10.1007/BF00010074
  77. Nodvin SC, van Miegroet H, Lindberg SE, Nicholas NS, Johnson DW. 1995. Acidic deposition, ecosystem processes, and nitrogen saturation in a high elevation southern Appalachian watershed. Water Air Soil Poll 85: 1647-1652 https://doi.org/10.1007/BF00477216
  78. Ohrui K, Mitchell MJ. 1997. Nitrogen saturation in Japanese forested watersheds. Ecol Appl 7: 391-401 https://doi.org/10.1890/1051-0761(1997)007[0391:NSIJFW]2.0.CO;2
  79. Ohrui K, Mitchell MJ. 1998. Effects of nitrogen fertilization on stream chemistry of Japanese forested watersheds. Water Air Soil Poll 107: 219-235 https://doi.org/10.1023/A:1004988603240
  80. Ohte N, Mitchell MJ, Shibata H, Tokuchi N, Toda H, Iwatsubo F. 2001. Comparative evaluation on nitrogen saturation forest catchments in Japan and northeastern United States. Water Air Soil Poll 130: 649-654 https://doi.org/10.1023/A:1013804728336
  81. Ollinger SV, Aber JD. 1993. A spatial model of atmospheric deposition for the Northern State U.S. Ecol Appl 3: 459-472 https://doi.org/10.2307/1941915
  82. Pardo LH, Driscol CT, Likens GE. 1995. Patterns of nitrate loss from a chronosequence of clear-cut watersheds. Water Air Soil Poll 85: 1659-1664 https://doi.org/10.1007/BF00477218
  83. Pardo LH, Driscoll CT. 1996. Critical loads for nitrogen deposition: case studies at two northern hardwood forests. Water Air Soil Poll 89: 105-128 https://doi.org/10.1007/BF00300425
  84. Park J-H, Matzner E. 2001. Carbon control on nitrogen dynamics in the forest floor of an N-enriched deciduous forest ecosystem. Water Air Soil Poll 130: 643-648 https://doi.org/10.1023/A:1013800611498
  85. Park S-U, Lee YH. 2002. Spatial distribution of wet deposition of nitrogen in South Korea. Atmos Environ 36: 619-628 https://doi.org/10.1016/S1352-2310(01)00489-7
  86. Persson H, von Fricks Y, Majdi H, Nilsson L-O. 1995. Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulphate application. Plant Soil 168-169: 161-165 https://doi.org/10.1007/BF00029324
  87. Postek KM, Driscoll CT, Kahl JS, Norton SA. 1995. Changes in the concentrations and speciation of aluminum in response to an experimental addition of ammonium sulfate to the Bear Brook watershed, Maine, USA. Water Air Soil Poll 85: 1733-1738 https://doi.org/10.1007/BF00477230
  88. Rainey SM, Nadelhoffer KJ, Silver WL, Downs MR. 1999. Effects of chronic nitrogen additions on understory species in a red pine plantation. Ecol Appl 9: 949.-957 https://doi.org/10.1890/1051-0761(1999)009[0949:EOCNAO]2.0.CO;2
  89. Rodenkirchen R. 1992. Effects of acidic precipitation, fertilization and liming on the ground vegetation in coniferous forests of southern Germany. Water Air Soil Poll 61: 279-294 https://doi.org/10.1007/BF00482611
  90. Rothe A, Mellert KH. 2004. Effects of forest management on nitrate concentrations in seepage water of forests in southern Bavaria, Germany. Water Air Soil Poll. 156: 337-355 https://doi.org/10.1023/B:WATE.0000036826.17273.b3
  91. Schleppi P, Bucher-Wallin I, Siegwolf R, Saurer M, Muller N, Bucher JB. 1999. Simulation of increased nitrogen deposition to a montane forest ecosystem: partitioning of the added $^{15}N$. Water Air Soil Poll 116: 129-134 https://doi.org/10.1023/A:1005206927764
  92. Schulze E-D, de Vries W, Hauhs M, Rosen K, Rasmussen L, Tamm C-O, Nilsson J. 1989. Critical loads for nitrogen deposition on forest ecosystems. Water Air Soil Poll 48: 451-456 https://doi.org/10.1007/BF00283342
  93. Shim JM, Park SU. 2001. Estimation of the nitrogen and base cation uptake of South Korean forest. Korean J Ecol 24: 51-59
  94. Shim JM. 2004. Impacts of acid deposition on the forest ecosystems in South Korea. (PhD thesis). Seoul National University, Seoul
  95. Sitaula BK, Sitaula JIB, Aakra Å, Bakken LR. 2001. Nitrification and methane oxidation in forest soil: acid deposition, nitrogen input and plant effects. Water Air Soil Poll 130: 1061-1066 https://doi.org/10.1023/A:1013978212795
  96. Skeffington RA. 1990. Accelerated nitrogen inputs - A new problem or a new perspective? Plant Soil 128: 1-11 https://doi.org/10.1007/BF00009391
  97. Stark JM, Hart SG. 1997. High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385: 61-64 https://doi.org/10.1038/385061a0
  98. Steudler PA, Bowden RD, Melillo JM, Aber JD. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341: 314-316 https://doi.org/10.1038/341314a0
  99. Sven B, Liu C. 1995. Impact of sulphur and nitrogen deposition on plant species assemblages in natural vegetation. Water Air Soil Poll. 85: 1581-1586 https://doi.org/10.1007/BF00477206
  100. Tietema A, Wright RF, Blanck K, Boxman AW, Breemeier M, Emmett BA, Gundersen P, Hulberg H, Kjonass OJ, Moldan F, Roefafs JGM, Schleppi P, Stuanes AO, van Breemen N. 1995. NITREX: the timing of response of coniferous forest ecosystems to experimentally - changed nitrogen deposition. Water Air Soil Poll 85: 1623-1628 https://doi.org/10.1007/BF00477212
  101. Tilman D. 1987. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr. 57: 189-214 https://doi.org/10.2307/2937080
  102. Townsend AR, Braswell BH, Holland EA, Penner JE. 1996. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol Appl 6: 806-814 https://doi.org/10.2307/2269486
  103. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7: 737-750
  104. Vitousek PM. 1994. Beyond global warming: ecology and global change. Ecology 75: 1861-1876 https://doi.org/10.2307/1941591
  105. Watmough SA, Eimers MC, Aherne J, Dillon PJ. 2004. Climate effects on stream nitrate concentration at 16 forested catchments in South Central Ontario. Environ Sci Technol 38: 2383-2388 https://doi.org/10.1021/es035126l
  106. Wedin DA, Tilman D. 1996. Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 274: 1720-1724 https://doi.org/10.1126/science.274.5293.1720
  107. Widory D, Petelet-Giraud E, Négrel P, Ladouche B. 2005. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis. Environ Sci Technol 39: 539-548 https://doi.org/10.1021/es0493897
  108. Williams MW, Baron JS, Caine N, Sommerfeld R, Sanford Jr R. 1996. Nitrogen saturation in the Rocky Mountains. Environ Sci Technol. 30: 640-646 https://doi.org/10.1021/es950383e
  109. Wöllecke J, Münzenberger B, Hütell RF. 1999. Some effects of N on ectomycorrhizal diversity of Scots pine (Pinus sylvestris L.) in northeastern Germany. Water Air Soil Poll 116: 135-140 https://doi.org/10.1023/A:1005211011835
  110. Yoh M, Konohira E, Yagi K. 2001. Regional distribution of natural stream nitrate in Central Japan. Water Air Soil Poll. 130: 655- 660 https://doi.org/10.1023/A:1013856729245
  111. Zöttl HW. 1990. Remarks on the effects on nitrogen deposition to forest ecosystems. Plant Soil 128: 83-89 https://doi.org/10.1007/BF00009399

Cited by

  1. Comparison of Nitrogen Fixation for North- and South-facing Robinia pseudoacacia Stands in Central Korea vol.53, pp.1, 2010, https://doi.org/10.1007/s12374-009-9088-9
  2. 2011 Nitrogen Budget of South Korea Including Nitrogen Oxides in Gas Phase vol.36, pp.2, 2014, https://doi.org/10.4491/KSEE.2014.36.2.75