DOI QR코드

DOI QR Code

Accuracy Improvement of FBG Temperature Sensor System

광섬유격자 온도센서의 정밀도 개선

  • Lee, Hyun-Wook (Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Song, Min-Ho (Division of Electronics and Information Engineering, Chonbuk National University) ;
  • Lee, June-Ho (Department of Electrical Engineering, Hoseo University)
  • 이현욱 (전북대학교 전자정보공학부) ;
  • 송민호 (전북대학교 전자정보공학부) ;
  • 이준호 (호서대학교 전기공학과)
  • Published : 2006.03.01

Abstract

We propose the use of the Gaussian-curve fitting algorithm for the improvement of measurement accuracy in wavelengthscanned Fabry-Perot filter based demodulation systems. The peak locations of FBG sensors were calculated from the fitted curves rather than from distorted PD profiles, resulting in much better measurement accuracy than that of the highest-peak search algorithm. Also, the algorithm was proved to minimize measurement uncertainty of spectrally-distorted grating sensors. From our experimental results, a temperature resolution as small as ${\sim}0.3^{\circ}C$ was readily achieved by use of the Gaussian-curve fitting algorithm whereas the highest-peak search algorithm gave a temperature resolution larger than ${\sim}4^{\circ}C$.

전력시스템의 비정상적 동작에 의한 열적 현상을 감지하기 위하여 준분배형 광섬유격자 온도센서를 구현하였다. 2개의 기준격자와 4개의 센서격자를 사용하고, Fabry-Perot 가변파장필터를 사용하여 반사파장의 변화를 측정함으로써 각 센서 위치에서의 온도변화를 관측하였다. 측정의 정밀도를 높이기 위하여 광검출기의 신호를 가우시안 cure-fitting 알고리즘으로 처리한 후 계산된 파형에서 피크를 검출하였다. 실험을 통하여 기존의 피크검출방식에 비하여 높은 정밀도를 얻었으며, 반사 스펙트럼이 왜곡된 광섬유격자 센서의 출력검출에서도 뛰어난 오차보상 특성을 보여주는 것을 확인할 수 있었다. 2 Hz의 대역폭에서 $0.3^{\circ}C$의 정밀도를 얻었고, thermocouple 기준온도계와 비교한 온도측정실험에서 약 0.37 %의 선형화오차를 확인할 수 있었다.

Keywords

References

  1. A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, K.P. Koo, C.G. Askins, M.A. Putnam, and E.J. Friebele, 'Fiber Grating Sensors,' J. Lightwave Technol., 15, 1442-1462, 1997 https://doi.org/10.1109/50.618377
  2. A. Orthonos and K. Kalli, Fiber Bragg gratings: Fundamentals and applications in telecommunications and sensing, Boston, Artech House, 1999
  3. A.D. Kersey, T.A. Berkoff, and W.W. Morey, 'Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,' Opt. Lett., 18, 1370-1372, 1993 https://doi.org/10.1364/OL.18.001370
  4. C.C. Chang, G.A. Johnson, S.T. Vohra, 'Effects of Fiber Bragg Grating Spectrum Distortion on Scanning Fabry-Perot and Fiber Interferometer Based Wavelength Shift Detection Schemes,' Proc. OFS, 141-144, 1999
  5. C.C. Chan, W. Jin, H.L. Ho, D.N. Wang, and Y. Wang, 'Improvement of measurement accuracy of fibre Bragg grating sensor systems by use of gas absorption lines as multi-wavelength reference,' Electron. Lett., 37, 742-743, 2001 https://doi.org/10.1049/el:20010206
  6. R.J. Campbell and R. Kashyap, 'Spectral profile and multiplexing of Bragg gratings in photosensitive fiber,' Opt. Lett., 16, 898-900, 1991 https://doi.org/10.1364/OL.16.000898
  7. W.W. Morey, G. Meltz, W.H. Glenn, 'Fibre optic Bragg grating sensors,' Proc. SPIE, 1169, 98-107, 1994