Thermotropic Liquid Crystalline Properties of (8-Cholesteryloxycarbonyl)heptanoated Polysaccharides

(8-콜레스테릴옥시카보닐)헵타노화 다당류들의 열방성 액정 특성

  • Jeong Seung-Yong (Department of Polymer Science and Engineering, Dankook University) ;
  • Ma Yung-Dae (Department of Polymer Science and Engineering, Dankook University)
  • 정승용 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Published : 2006.07.01

Abstract

Fully or nearly fully(8-cholesteryloxycarbonyl)heptanoated polysaccharide derivatives were synthesized by reacting cellulose, amylose, chitosan, chitin, alginic acid, pullulan or amylopectin with (8-cholesteryloxycarbonyl)heptanoyl chloride (CH8C), and their thermotropic liquid crystalline behaviors were investigated. Like in the case of CH8C, all the polysaccharide derivatives formed monotropic cholesteric phases with left-handed helicoidal structures whose optical pitches $({\lambda_m}'s)$ decrease with increasing temperature. Amylopectin derivative also formed a monotropic cholesteric phase with lefthanded helicoidal structures but, in contrast with the other derivatives, did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the branched structure in amylopectin. The thermal stability and degree of order in the mesophase, the magnitude of ${\lambda}_m$ at the same temperature, and the temperature dependence of the ${\lambda}_m$ observed for polysaccharide derivatives were entirely different from those reported for the polymers in which the cholesteryl groups are attached to flexible or semiflexible backbones through flexible spacers. The results were discussed in terms of the difference in the chemical structures of the main and side chains and flexibility of the main chain.

셀룰로오스, 아밀로오스, 키토산, 키틴, 알긴산, 풀루란 또는 아밀로펙틴을 (8-콜레스테릴옥시카보닐)헵타 노일 클로라이드 (CH8C)와 반응시켜 전치환 또는 거의 전치환 (8-콜레스테릴옥시카보닐) 헵타노화 다당류 유도체들을 합성함과 동시에 이들의 열방성 액정의 거동들을 검토하였다. CH8C 의 경우와 같이, 아밀로펙틴 유도체를 제외한 모든 다당류 유도체들은 좌측방향의 나선구조를 지니며 온도상승에 의해 광학피치들 $({\lambda_m}'s)$이 감소하는 단방성 콜레스테릴 상들을 형성하였다. 아밀로펙틴 유도체도 좌측방향의 나선구조를 지닌 단방성 콜레스테릴 상을 형성하나 다른 다당류 유도체들과 달리 콜레스테릴 상의 전 범위에서 반사색깔들을 나타내지 않았다. 이러한 사실은 콜레스테릴 그룹에 의한 나선의 비틀림력은 아밀로펙틴 중의 분기구조에 민감하게 의존함을 시사한다. 다당류 유도체들에서 관찰되는 액정 상의 열적 안정성과 질서도, 동일한 온도에서의 ${\lambda}_m$ 의 크기 그리고 ${\lambda}_m$의 온도 의존성은 콜레스테릴 그룹들을 유연한 스페이서들을 통하여 유연한 흑은 반강직한 골격들에 도입시켜 얻은 고분자들에 대해 보고된 결과와 전혀 다르다. 이들의 결과를 주사슬과 곁사슬의 화학구조 그리고 주사슬의 유연성의 차이와 관련하에서 검토하였다.

Keywords

References

  1. K. Shimamura, J. L. White, and J. F. Fellers, J. Appl. Polym. Sci., 26, 2615 (1981)
  2. S.-L. Tseng, A. Valente, and D. G. Gray, Macromolecules, 14, 715 (1981) https://doi.org/10.1021/ma50004a049
  3. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol Symp., 99, 257 (1995)
  4. P. Zugenmaier, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol. 3, Chap. IX, p. 453 (1998)
  5. S.-Y. Jeong, J.-H. Jeong, Y.-D. Ma, and Y. Tsujii, Polymer(Korea), 25, 279 (2001) https://doi.org/10.1016/0032-3861(84)90337-9
  6. Q. Zhou, L. Zhang, H. Okamura, M. Minoda, and T. Miyamoto, J. Polym, Sci.; Part A: Polym. Chem., 39, 376 (2001) https://doi.org/10.1002/1099-0518(20010201)39:3<376::AID-POLA1004>3.0.CO;2-Z
  7. Z. Yue and J. M. G. Cowie, Macromolecules, 35, 6572 (2002) https://doi.org/10.1021/ma0202787
  8. Y.-D. Ma, Polymer Science and Technology, 8, 555 (1997)
  9. K. Ogura, T. Kanamoto, T. Sannan, K. Tanaka, and Y. Iwakura, Proc. Int. Conference on Chitin and Chitosan, Japan, p. 39 (1982)
  10. J.-H. Jeong, M. Sc. Dissertation, Dankook University, 1998
  11. Y.-D. Ma and K-H. Kim, Polymer(Korea), 24, 418 (2000)
  12. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, C. B. McArdle, Editor, Chapman and Hall, Inc., New York, Chap. 3, p. 30 (1989)
  13. R. Zentel, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim- New York, Vol. 3, Chap. I, p. 52 (1998)
  14. V. A. E. Shaikh, N. N. Maldar, S. V. Lonikar, C. R. Rajan, and S. Ponrathnam, J. Appl. Polym, Sci., 70, 195 (1998) https://doi.org/10.1002/(SICI)1097-4628(19981003)70:1<195::AID-APP19>3.0.CO;2-6
  15. V. A. E. Shaikh, N. N. Maldar, S. V. Lonikar, C. R. Rajan, and S. Ponrathnam, J. Appl Polym. Sci., 72, 763 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990509)72:6<763::AID-APP4>3.0.CO;2-M
  16. C. Wu, Y. Huang, and S. Chen, Polym. Bull, 48, 33 (2002) https://doi.org/10.1007/s00289-002-0003-5
  17. C. Wu, Q. Gu, Y. Huang, and S. Chen, Liq. Cryst., 30, 733 (2003)
  18. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 41 (2004)
  19. J.-H. Kim, S.-Y. Jeong, and Y. -D. Ma, Polymer(Korea), 28, 92 (2004)
  20. G. Pfaff and P. Reynders, Chem. Rev., 99, 1963 (1999) https://doi.org/10.1021/cr970075u
  21. N. Tamaoki, S. Song, M. Moriyama, and H. Matsuda, Adv. Mater., 12, 94 (2000) https://doi.org/10.1002/(SICI)1521-4095(200001)12:2<94::AID-ADMA94>3.0.CO;2-T
  22. N. Tamaoki, Adv. Mater., 13, 1135 (2001) https://doi.org/10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S
  23. M. Moriyama, S. Song, H. Matsuda, and N. Tamaoki, J. Mater. Chem., 11, 1003 (2001) https://doi.org/10.1039/b009892m
  24. N. Tamaoki, H. Matsuda, and A. Takahashi, Liq. Cryst., 28, 1823 (2001) https://doi.org/10.1080/02678290110082365
  25. Ya. S. Freidzon and V. P. Shibaev, Liquid - crystal Polymers, N. A. Plate, Editor, Plenum Press, New York, Chap. 7, p. 251 (1993)
  26. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 35 (2006) https://doi.org/10.1016/0032-3861(89)90379-0
  27. H. Hattori and T. Uryu, J. Polym. Sci.; Part A: Polym. Chem., 38, 887 (2000) https://doi.org/10.1002/(SICI)1099-0518(20000301)38:5<887::AID-POLA13>3.0.CO;2-G
  28. T. Kaneko, H. Nagasawa, J. P. Gong, and Y. Osada, Macromolecules, 37, 187 (2004) https://doi.org/10.1021/ma035272b
  29. S. Koltzenbrug, F. Stelzer, and O. Nuyken, Macromol. Chem. Phys., 200, 821 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990401)200:4<821::AID-MACP821>3.0.CO;2-A
  30. S.-W. Cha, J.-I. Jin, D.-C. Kim, and W.-C. Zin, Macromolecules, 34, 5432 (2001)
  31. J. W. Y. Lam and B. Z. Tang, J. Polym. Sci.; Part A: Polym. Chem., 41, 2607 (2003) https://doi.org/10.1002/pola.10802
  32. S.-S. Kim, S.-H. Kim, and Y.-M. Lee, J. Polym. Sci.;Part B Polym, Phys., 34, 2367 (1996) https://doi.org/10.1002/(SICI)1099-0488(199610)34:14<2367::AID-POLB6>3.0.CO;2-T
  33. M. Sugiura, M. Minoda, J. Watanabe, T. Fukuda, and T. Miyamoto, Bull Chem. Soc. Jpn., 65, 1939 (1992) https://doi.org/10.1246/bcsj.65.1939
  34. T. Itoh, H. Suzuki, and T. Miyamoto, Bull Inst. Chem. Res. (Kyoto Univ.), 70, 132 (1992)
  35. K. Aoi, A. Takasu, and M. Okada, Macromol. Chem. Phys., 195, 3835 (1994) https://doi.org/10.1002/macp.1994.021951209
  36. N. Kubota and Y. Eguchi, Polym. J., 29, 123 (1997) https://doi.org/10.1295/polymj.29.123
  37. Y.-D. Ma, S.-Y. Jeong, and J.-H. Choi, Industrial Technology Research Paper (Dankook University), 2, 49 (2001)
  38. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper (Dankook University), 5, 21 (2004)
  39. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper (Dankook University), 6, 1 (2005)
  40. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper (Dankook University), 6, 21 (2005)
  41. Y.-D. Ma, J.-H. Kim, and J.-H. Choi, Industrial Technology Research Paper (Dankook University), 3, 27 (2003)
  42. J.-H. Kim and Y.-D. Ma, J. Korean Ind Eng. Chem., 15, 113 (2004)
  43. C.-I. Oh, M. Sc. Dissertation, Dankook University, 1996
  44. H. Jeong, M. Sc. Dissertation, Dankook University, 1997
  45. S.-Y. Jeong and Y.-D. Ma, to be published
  46. S. K. Rath and R. P. Singh, J. Appl. Polym, Sci., 70, 1795 (1998) https://doi.org/10.1002/(SICI)1097-4628(19981128)70:9<1795::AID-APP18>3.0.CO;2-2
  47. C. Xiao, S. Gao, and L. Zhang, J. Appl. Polym. Sci., 77, 617 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<617::AID-APP17>3.0.CO;2-1
  48. V. D. Athawale and S. C. Rathi, Eur. Polym. J., 33, 1067 (1997) https://doi.org/10.1016/S0014-3057(96)00294-7
  49. C. Xiao, Y. Lu, H. Liu, and L. Zhang, J. Appl Polym. Sci., 80, 26 (2001) https://doi.org/10.1002/1097-4628(20010404)80:1<26::AID-APP1070>3.0.CO;2-B
  50. D. Vega, M. A. Villar, M. D. Failla, and E. M. Valles, Polym. Bull., 37, 229 (1996) https://doi.org/10.1007/BF00294126
  51. X. Qu, A. Wirsen, and A.-C. Albertsson, Polymer, 41, 4841 (2000) https://doi.org/10.1016/S0032-3861(99)00704-1
  52. T. L. Vigo, Encyc!opeIda of Polymer Science and Engineering, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, Editors, Jhon Wiley & Sons, Inc., Vol. 3, p. 110 (1985)
  53. X. Qu, A. Wirsen, and A.-C. Albertsson, Polymer, 41, 4841 (2000) https://doi.org/10.1016/S0032-3861(99)00704-1
  54. B. Reck and H. Ringsdorf, Makromol. Chem. RapId Commun., 6, 389 (1986)
  55. B. Reck, H. Ringsdorf, K. Gardner, and H. Starkweather, Makromol. Chem., 190, 2511 (1989) https://doi.org/10.1002/macp.1989.021901017
  56. H. Hattori and T. Uryu, J. Polym. Sci.; Part A: Polym. Chem., 38, 887 (2000) https://doi.org/10.1002/(SICI)1099-0518(20000301)38:5<887::AID-POLA13>3.0.CO;2-G
  57. J. W. Y. Lam, X. Kong, Y. Dong, K. K. L. Cheuk, K. Xu, and B. Z. Tang, Macromolecules, 33, 5027 (2000) https://doi.org/10.1021/ma992097j
  58. A. Ciferri, LiqUId Crystallinity in Polymers, A. Ciferri, Editor, VCH Publishers, New York, Chap. 6, p. 209 (1991)
  59. A. Takada, T. Fukuda, J. Watanabe, and T. Miyamoto, Macromolecules, 28, 3394 (1995) https://doi.org/10.1021/ma00113a045
  60. M. Yalpani, PolysaccharIdes, Elsevier Science Publishers, New York, Chap. 4, p. 83 (1988)
  61. E. A. MacGregor and C. T. Greenwood, Polymers in Nature, John Wiley & Sons, New York, Chap. 6, p. 240 (1980)
  62. B. Hsu, C. A. McWherter, D. Brant, and W. Burchard, Macromolecules, 15, 1350 (1982) https://doi.org/10.1021/ma00233a027
  63. S. Weidner, D. Wolff, and J. Springer, Liq. Cryst., 20, 587 (1996) https://doi.org/10.1080/02678299608031147
  64. J. H. Hu, B.-Y. Zhang, Y. Wang, and F. B. Meng, J. Polym. Sci; Part A: Polym. Chem., 42, 3870 (2004) https://doi.org/10.1002/pola.20266
  65. H. Ogawa, E. Stibal-Fisher, and H. Finkelmann, Macromol. Chem. Phys., 205, 593 (2004) https://doi.org/10.1002/macp.200300231
  66. J. W, Y. Lam, X. Kong, Y. Dong, K. K. L. Cheuk, K. Xu, and B. Z. Tang, Macromolecules, 33, 5027 (2000) https://doi.org/10.1021/ma992097j
  67. T. Yamaguchi, T. Asada, H. Hayashi, and N. Nakamura, Macromolecules, 22, 1141 (1989) https://doi.org/10.1021/ma00193a024
  68. H. de Vires, Acta Crystallogr., 4, 219 (1951) https://doi.org/10.1107/S0365110X51000751
  69. L. Wang and Y. Huang, Macromolecules, 37, 303 (2004) https://doi.org/10.1021/ma0344893
  70. X. Wang, L. Wang, and Y. Huang, J. Appl. Polym. Sci., 91, 3574 (2004) https://doi.org/10.1002/app.13585
  71. L. Wang and Y. Huang, Liq. Cryst., 30, 1129 (2003) https://doi.org/10.1080/02678290310001599279
  72. S.-Y. Jeong, J.-H. Choi, and Y. -D. Ma, Polymer(Korea), 26, 523 (2002)