Evaluation of Biological Characteristics of Neutron Beam Generated from MC50 Cyclotron

MC50 싸이클로트론에서 생성되는 중성자선의 생물학적 특성의 평가

  • Eom, Keun-Yong (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Park, Hye-Jin (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Huh, Soon-Nyung (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Ye, Sung-Joon (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Lee, Dong-Han (Department of Radiation Oncology, The Korea Institute of Radiological and Medical Sciences) ;
  • Park, Suk-Won (Department of Radiation Oncology, Chung-Ang University College of Korea) ;
  • Wu, Hong-Gyun (Department of Radiation Oncology, Seoul National University College of Medicine)
  • 엄근용 (서울대학교 의과대학 방사선종양학교실) ;
  • 박혜진 (서울대학교 의과대학 방사선종양학교실) ;
  • 허순녕 (서울대학교 의과대학 방사선종양학교실) ;
  • 예성준 (서울대학교 의과대학 방사선종양학교실) ;
  • 이동한 (원자력의학원 방사선종양학과) ;
  • 박석원 (중앙대학교 의과대학 방사선종양학교실) ;
  • 우홍균 (서울대학교 의과대학 방사선종양학교실)
  • Published : 2006.12.31

Abstract

$\underline{Purpose}$: To evaluate biological characteristics of neutron beam generated by MC50 cyclotron located in the Korea Institute of Radiological and Medical Sciences (KIRAMS). $\underline{Materials\;and\;Methods}$: The neutron beams generated with 15 mm Beryllium target hit by 35 MeV proton beam was used and dosimetry data was measured before in-vitro study. We irradiated 0, 1, 2, 3, 4 and 5 Gy of neutron beam to EMT-6 cell line and surviving fraction (SF) was measured. The SF curve was also examined at the same dose when applying lead shielding to avoid gamma ray component. In the X-ray experiment, SF curve was obtained after irradiation of 0, 2, 5, 10, and 15 Gy. $\underline{Results}$: The neutron beams have 84% of neutron and 16% of gamma component at the depth of 2 cm with the field size of $26{\times}26\;cm^2$, beam current $20\;{\mu}A$, and dose rate of 9.25 cGy/min. The SF curve from X-ray, when fitted to linear-quadratic (LQ) model, had 0.611 as ${\alpha}/{\beta}$ ratio (${\alpha}=0.0204,\;{\beta}=0.0334,\;R^2=0.999$, respectively). The SF curve from neutron beam had shoulders at low dose area and fitted well to LQ model with the value of $R^2$ exceeding 0.99 in all experiments. The mean value of alpha and beta were -0.315 (range, $-0.254{\sim}-0.360$) and 0.247 ($0.220{\sim}0.262$), respectively. The addition of lead shielding resulted in no straightening of SF curve and shoulders in low dose area still existed. The RBE of neutron beam was in range of $2.07{\sim}2.19$ with SF=0.1 and $2.21{\sim}2.35$ with SF=0.01, respectively. $\underline{Conclusion}$: The neutron beam from MC50 cyclotron has significant amount of gamma component and this may have contributed to form the shoulder of survival curve. The RBE of neutron beam generated by MC50 was about 2.2.

목 적: 원자력의학원에 설치되어 있는 MC50 사이클로트론에서 생성되는 중성자선의 의학적 이용을 위하여 생물학적 특성을 평가하고자 하였다. 대상 및 방법: 35 MeV 양성자를 15 mm 베릴륨 표적에 부딪혀서 생성된 중성자선에 대하여 물리적 방사선선량을 측정한 후 체외실험(in-vitro)을 하였다. EMT-6 세포주(cell line)를 이용하여 $0{\sim}5\;Gy$의 중성자선을 조사 후 생존분획(surviving fraction)을 구하였다. 또한 감마선의 효과를 피하기 위하여 납차폐를 한 후에 동일 조건에서 생존분획을 구하였다. 엑스선 실험에서는 0, 2, 5, 10, 15 Gy를 조사 후 생존분획을 측정하였다. 결 과: MC50의 중성자선은 조사야 $26{\times}26\;cm^2$, 전류 $10{\mu}A$, 깊이 2 cm에서 84%의 중성자와 16%의 감마선으로 구성되어 있었고, 총선량률은 9.25 cGy/min이었다. 엑스선을 이용하여 측정한 생존분획곡선은 선형이차함수모델 (linear quadratic model)을 적용하였을 때 ${\alpha}/{\beta}$비는 0.611 (${\alpha}=0.0204,\;{\beta}=0.0334,\;R^2=0.999$)이었다. 중성자선에 있어서 생존분획곡선은 저선량 영역에서 어깨영역(shoulder area)을 가지고 있었고, 모든 실험에서 선형이차함수모델에 잘 맞았다. ${\alpha}$의 평균값은 -0.315 (범위, $-0.254{\sim}-0.360$)였고, ${\beta}$값은 0.247 (범위, $0.220{\sim}0.262$)이었다. 납차폐를 하였을 때에도 생존분획곡선에서 어깨영역은 없어지지 않았다. 중성자선의 RBE (relative biological effectiveness) 값은 생존분획이 0.1일 때 $2.07{\sim}2.19$ 범위였고, 0.01일 때 $2.21{\sim}2.35$였다. 결 론: MC50에서 생성된 중성자선은 상당량의 감마선을 내포하고 있으며 이것이 생존분획곡선에서 어깨영역이 나타나는 데에 기여하였을 것이다. MC50의 중성자선의 RBE 값은 약 2.2였다.

Keywords

References

  1. Schmitt G, Wambersie A. Review of the clinical results of fast neutron therapy. Radiother Oncol 1990;17:47-56 https://doi.org/10.1016/0167-8140(90)90048-2
  2. Wambersie A. Fast neutron therapy at the end of 1988-a survey of the clinical data. Strahlenther Onkol 1990;166:52-60
  3. Peak MJ, Wang L, Hill CK, Peak JG. Comparison of repair of DNA double-strand breaks caused by neutron or gamma radiation in cultured human cells. Int J Radiat Biol 1991;60:891-898 https://doi.org/10.1080/09553009114552691
  4. Chapman JD. Biophysical models of mammalian cell inactivation by radiation. In: Meyn RE, Withers HR, eds. Radiation Biology in Cancer Research. New York: Raven Press. 1980: 21-32
  5. Chai JS, An DH, Chang HS, et al. Operation Experience of MC50 cyclotron, KIRAMS. Proceedings of APAC 2004, Gyeongju, Korea, 67-69
  6. Yoo SY, Noh SW, Chung HW, et al. Dosimetric characteristics of the KCCH neutron therapy facility. J Korean Soc Ther Radiol Oncol 1988;6:85-91
  7. Lee DH, Seo SH, Ji YH, et al. Characteristics of radiation generated by BNCT irradiator of Hanaro nuclear reactor. J Korean Soc Radiol Oncol 2006;24:s158
  8. Gragg RL, Humphrey RM, Meyn RE. The response of Chinese hamster ovary cells to fast neutron radiotherapy beams-II. Sublethal and potentially lethal damage recovery capabilities. Radiat Res 1977;71:461-470 https://doi.org/10.2307/3574687
  9. Hall EJ, Kraljevic U. Repair of potentially lethal radiation damage: comparison of neutron and X-ray RBE and implications for radiation therapy. Radiology 1976;121:731-735 https://doi.org/10.1148/121.3.731
  10. Raju MR, Frank JP, Bain E, Trujillo TT, Tobey RA. Repair of potentially lethal damage in CHO cells by X- and ${\gamma}$-irradiation. Radiat Res 1977;71:614-621 https://doi.org/10.2307/3574628
  11. Lee DH, Ji YH, Park HJ, et al. Dosimetry of the low fluence fast neutron beams for boron neutron capture therapy. J Korean Soc Ther Radiol Oncol 2001;19:66-73
  12. Rasey JS, Nelson NJ, Carpenter RE. Recovery from potentially lethal damage following irradiation with X-rays or cyclotron neutrons. Int J Radiat Oncol Biol Phys 1978;4: 1023-1027 https://doi.org/10.1016/0360-3016(78)90015-9
  13. Peak MJ, Wang L, Hill CK, Peak JG. Comparison of repair of DNA double-strand breaks caused by neutron or gamma radiation in cultured human cells. Int J Radiat Biol 1991;60:891-898 https://doi.org/10.1080/09553009114552691
  14. Hetzel FW, Kruuv J, Frey HE. Repair of potentially lethal damage in X-irradiated V79 cells. Radiat Res 1978;68:308-319
  15. Broerse JJ, Engels AC, Lelieveld P, et al. The survival of colony-forming units in mouse bone-marrow after in vivo irradiation with D-T neutrons, X- and gamma-radiation. Int J Radiat Biol 1971;19:101-110 https://doi.org/10.1080/09553007114550151
  16. Railton R, Lawson RC, Porter D, Hannan WJ. Neutron spectrum dependence of RBE and OER values. Int J Radiat Biol 1973;23:509-518 https://doi.org/10.1080/09553007314550581
  17. Guelette J, Beauduin M, Gregoire V, et al. RBE variation between fast neutron beams as a function of energry. Intercomparison involving 7 neutrontherapy facilities. Bull Cancer Radiother 1996;83 suppl:55s-63s https://doi.org/10.1016/0924-4212(96)84886-9
  18. Edwards AA. Neutron RBE values and their relationship to judgements in radiological protection. J Radiol Prot 1999;19: 92-105
  19. Britten RA, Peters LJ, Murray D. Biological factors influencing the RBE of neutrons: implications of their past, present and future use in radiotherapy. Radiat Res 2001;156:125-135 https://doi.org/10.1667/0033-7587(2001)156[0125:BFITRO]2.0.CO;2