Biotransformation of Flavonoids with O-Methyltransferase from Bacillus cereus

  • Lee Yoon-Jung (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim Bong-Gyu (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Park Young-Hee (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lim Yoong-Ho (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Hur Hor-Gil (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Ahn Joong-Hoon (Division of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2006.07.01

Abstract

O-Methylation is a common modification reaction found in nature, and is mediated by an O-methyltransferase (OMT). OMTs have been mainly studied in plants, whereas only a few OMTs have been studied in microbes. When searching the Bacillus cereus genome, four putative small molecular OMTs were identified, among which BcOMT-1 was cloned and expressed in E. coli as a his-tag fusion protein. The whole cell expressing BcOMT-1 was used to methylate several flavonoids. Eriodictyol, luteolin, quercetin, and taxifolin, all of which contain 3' and 4' hydroxyl groups, served as methyl group acceptors for BcOMT-1, whereas naringenin, apigenin, 3,3'-dihydroxyflavone, and 3,4'-dihydroxyflavone did not function as substrates. Analysis of the reaction products using HPLC showed two different peaks, and NMR revealed that the methylation position was at the hydroxyl group of either carbon 3' or 4'. Therefore, this showed that BcOMT-1 used flavonoids containing ortho hydroxyl groups and transferred a methyl group to either of two hydroxyl groups.

Keywords

References

  1. Dixon, R. A. and C. L. Steele. 1999. Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends Plant Sci. 4: 394-400 https://doi.org/10.1016/S1360-1385(99)01471-5
  2. Dixon, R. A. and M. J. Harrison. 1999. Activation structure and organization of genes involved in microbial defense in plants. Adv. Genet. 28: 165-234
  3. Hoffmann, L., S. Maury, M. Bergdoll, L. Thion, M. Erard, and M. Legrand. 2001. Identification of the enzymatic active site of tobacco caffeoyl-coenzyme A O-methyltransferase by site-directed mutagenesis. J. Biol. Chem. 276: 36831-36838 https://doi.org/10.1074/jbc.M104977200
  4. Ibdah, M., X.-H. Zhang, J. Schnot, and T. Vogt. 2003. A novel $Mg^{2+}$-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesernbryanthernum crystallinum. J. Biol. Chem. 278: 43961-43972 https://doi.org/10.1074/jbc.M304932200
  5. Ibrahim, R. K., A. Bruneau, and B. Bantiganies. 1998. Plant O-methyltransferase: Molecular analysis, common signature and classification. Plant Mol. Biol. 36: 1-10 https://doi.org/10.1023/A:1005939803300
  6. Ivanova, N., A. Sorokin, I. Anderson, N. Galleron, B. Candelon, V. Kapatral, A. Bhattacharyya, G. Reznik, N. Mikhailova, A. Lapidus, L. Chu, M. Mazur, E. Goltsman, N. Larsen, M. D'Souza, T. Walunas, Y. Grechkin, G. Pusch, R. Haselkorn, M. Fonstein, D. S. D. Ehrlich, R. Overbeek, and N. Kyrpides. 2003. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: 87-91 https://doi.org/10.1038/nature01582
  7. Joshi, C. P. and V. L. Chiang. 1998. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol. Biol. 37: 663-674 https://doi.org/10.1023/A:1006035210889
  8. Kagan, R. M. and S. Clarke. 1994. Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch. Biochem. Biophys. 310: 417-427 https://doi.org/10.1006/abbi.1994.1187
  9. Kim, B. G, D. H. Kim, H. G. Hur, J. Lim, Y Lim, and J. H. Ahn. 2005. O-Methyltransferases from Arabidopsis thaliana. Agric. Chem. Biotechnol. 48: 113-119
  10. Kim, D. H., B. G. Kim, Y. Lee, J. Y Ryu, Y. Lim, H.-G. Hur, and J.-H. Ahn. 2005. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J. Biotechnol. 119: 155-162 https://doi.org/10.1016/j.jbiotec.2005.04.004
  11. Kim, H.-A., D.-Y. Yoon, S.-M. Lee, S.-H. Baek, G.-H. Han, Y.-H. Kho, and C.-H. Lee. 2005. Screening and biotransformation of interleukin-1$\beta$ converting enzyme production inhibitors from Arctii fructus. J. Microbiol. Biotechnol. 15: 269-273
  12. Kim, Y. M., K. Park, J.-H. Choi, J.-E. Kim, and I.-K. Rhee. 2004. Biotransformation of the fungicide chlorothalonil by bacterial glutathione S-transferase. J. Microbiol. Biotechnol. 14: 938-943
  13. Koes, R. E., F. Quattrocchio, and J. N. M. Mol. 1994. The flavonoid biosynthetic pathway in plants: Function and evolution. BioEssays 16: 123-132 https://doi.org/10.1002/bies.950160209
  14. Madduri, K., F. Torti, A. L. Colombo, and C. R. Hutchinson. 1993. Cloning and sequencing of a gene encoding canninomycin 4-O-methyltransferase from Streptomyces peucetius and its expression in Escherichia coli. J. Bacteriol. 175: 3900-3904 https://doi.org/10.1128/jb.175.12.3900-3904.1993
  15. Mohammed, H. and J. P. N. Rosazza. 1999. Microbial hydroxylation and methylation of genistein by Streptomycetes. J. Nat. Prod. 62: 1609-1612 https://doi.org/10.1021/np9901783
  16. Morishige, T., K. B. Choi, and F. Sato. 2004. In vivo bioconversion of tetrahydroisoquinoline by recombinant coclaurine N-methyltransferase. Biosci. Biotechnol. Biochem. 68: 939-941 https://doi.org/10.1271/bbb.68.939
  17. Patel, R. N. 2001. Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Curr. Opin. Biotechnol. 12: 587-604 https://doi.org/10.1016/S0958-1669(01)00266-X
  18. Straathof, A. J. J., S. Panke, and A. Schmid. 2002. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 13: 548-556 https://doi.org/10.1016/S0958-1669(02)00360-9
  19. Vidgren, J., L. S. Svensson, and A. Liljas. 1994. Crystal structure of catechol O-methyltransferase. Nature 368: 354-358 https://doi.org/10.1038/368354a0
  20. Willits, M. G., M. Giovanni, R. T. N. Prata, C. M. Kramer, V. De Luca, J. C. Steffens, and G. Graser. 2004. Biofermentation of modified flavonoids: An example of in vivo diversification of secondary metabolites. Phytochemistry 65: 31-41 https://doi.org/10.1016/j.phytochem.2003.10.005