Development of an Agar Diffusion Method to Measure Elastase Inhibition Activity Using Elastin-Congo Red

  • Jung Kyung-Hwan (Department of Food and Biotechnology, Chungju National University) ;
  • Kim Hyun-Joo (School of Liberal Arts, Chungju National University)
  • Published : 2006.08.01

Abstract

The pancreatic and neutrophil elastases are associated with several illnesses including lung and vascular diseases, various cancers, and pancreatitis. The development of a potent and specific inhibitor to the elastases could lead to new therapies. In this study, an agar diffusion method was modified to include a substrate-dye conjugate (Elastin-Congo red) as a substrate of elastase and an indicator of elastase inhibitory activity. The Elastin-Congo red agar plates consisted of 0.1 % Elastin-Congo red and 2.5% agar. The elastase and elastase inhibitors were simultaneously loaded into wells, ultimately resulting in halo formations in which the halo diameter decreased as the concentration of elastase inhibitor increased. The concentration of elastase inhibitor in the samples, therefore, was inversely proportional to the halo diameters. This simplified method provided an excellent correlation with the standard microplate technique, which uses a chromogenic substrate. The concentration of elastase inhibitor obtained from the culture supernatant of a recombinant elastase inhibitor produced by the yeast Pichia pastoris was easily determined. This study has established a simple modified and inexpensive agar diffusion method that is potentially useful for the identification, quantification, and screening of new elastase inhibitors.

Keywords

References

  1. Brooke, B. S., A. Bayes-Genis, and D. Y. Li. 2003. New insights into elastin and vascular disease. Trends Cardiovasc. Med. 13: 176-181 https://doi.org/10.1016/S1050-1738(03)00065-3
  2. Doi, K., T. Horiuchi, M. Uchinami, T. Tabo, N. Kimura, J. Yokomachi, M. Yoshida, and K. Tanaka. 2002. Neutrophil elastase inhibitor reduces hepatic metastases induced by ischaemia reperfusion in rats. Eur. J. Surg. 168: 507-510 https://doi.org/10.1080/110241502321116541
  3. Elastin Products Company. 2004. Research Biochemical Catalogue. Missouri, USA, pp. 11-14
  4. Jung, H. I., S. I. Kim, K. S. Ha, C. O. Joe, and K.-W Kang. 1995. Isolation and characterization of guamerin, a new human leukocyte elastase inhibitor from Hirudo nipponia. J. Biol. Chem. 270: 13879-13884 https://doi.org/10.1074/jbc.270.23.13879
  5. Kim, K.-Y., H.-K. Lim, K.-J. Lee, D.-H. Park, K.-W Kang, S.-I. Chung, and K.-H. Jung. 2000. Production and characterization of recombinant guamerin, and elastasespecific inhibitor, in methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 20: 1-9 https://doi.org/10.1006/prep.2000.1300
  6. Lee, H. S., W. J. Jin, S. G. Kang, Y. S. Hwang, Y. H. Kho, and K. J. Lee. 2000. Characterization of an elastase inhibitor produced by Streptomyces lavendulae SMF11. J. Microbiol. Biotechnol. 10: 81 -85
  7. Lee, J.-L., S.-N. Yang, C.-S. Park, D. Jeoung, and H.-Y. Kim. 2004. Purification and glycosylation pattern of human L-ferritin in Pichia pastoris. J. Microbiol. Biotechnol. 14: 68-73
  8. Lim, H.-K., K.-Y. Kim, K.-J. Lee, D.-H. Park, S.-I. Chung, and K.-H. Jung. 2000. Genetic stability of integrated structural gene of guamerin in recombinant Pichia pastor is. J. Microbiol. Biotechnol. 10: 470-475
  9. Lim, H.-K., S.-J. Choi, K.-Y Kim, and K.-H. Jung. 2003. DO-stat controlling two variables for the methanol induction of rGuamerin in Pichia pastoris and its application to repeated fed-batch. Appl. Microbiol. Biotechnol. 62: 342-348 https://doi.org/10.1007/s00253-003-1307-6
  10. Nozawa, F., M. Hirota, A. Okabe, M. Shibata, T. Iwamura, Y. Haga, and M. Ogawa. 2000. Elastase activity enhances the adhesion of neutrophil and cancer cells to vascular endothelial cells. J. Surg. Res. 94: 153-158 https://doi.org/10.1006/jsre.2000.6002
  11. Parka, J. Y, L. Chena, J. Leeb, T. Sellersa, and M. S. Tockmana. 2005. Polymorphisms in the promoter region of neutrophil elastase gene and lung cancer risk. Lung Cancer 48: 315-321 https://doi.org/10.1016/j.lungcan.2004.11.022
  12. Ro, H.-S., M.-S. Lee, M.-S. Hahm, H.-S. Bae, and B. H. Chung. 2005. Production of active carboxypeptidase Y of Saccharomyces cerevisiae secreted from methylotrophic yeast Pichia pastoris. J. Microbiol. Biotechnol. 15: 202-205
  13. Robert, L., A. M. Robert, and B. Jacotot. 1998. Elastinelastase-atherosclerosis revisited. Atherosclerosis 140: 281-295 https://doi.org/10.1016/S0021-9150(98)00171-3
  14. Shapiro, S. D. 2002. Neutrophil elastase: Path clearer, pathogen killer, or just pathologic? Am. J Respir. Cell Mol. BioI. 26: 266-268 https://doi.org/10.1165/ajrcmb.26.3.f233
  15. Sun, Z. and P. Yang. 2004. Role of imbalance between neutrophil elastase and ai-antitrypsin in cancer development and progression. Lancet Oncol. 5: 182-190 https://doi.org/10.1016/S1470-2045(04)01414-7
  16. Taniguchi, K., P. Yang, J. lett, E. Bass, R. Meyer, Y. Wang, C. Deschamps, and W. Liu. 2002. Polymorphisms in the promoter region of the neutrophil elastase gene are associated with lung cancer development. Clin. Cancer Res. 8: 1115-1120
  17. Tremblay, G. M., M. F. Janelle, and Y. Bourbonnais. 2003. Anti-inflammatory activity of neutrophil elastase inhibitors. Curr. Opin. Investig. Drugs 4: 556-565
  18. Zureik, M., L. Robert, D. Courbon, P.-J. Touboul, L. Bizbiz, and P. Ducirnetiere, 2002. Serum elastase activity, serum elastase inhibitors, and occurrence of carotid atherosclerotic plaques. Circulation 105: 2638-2645 https://doi.org/10.1161/01.CIR.0000017329.51160.EF