Effects of Water Temperature and Photoperiod on the Oxygen Consumption Rate of Juvenile Dark-banded Rockfish, Sebastes inermis

수온과 광주기에 따른 볼락, Sebastes inermis 치어의 산소 소비율

  • Oh Sung-Yong (Marine Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Noh Choong-Hwan (Marine Resources Research Department, Korea Ocean Research & Development Institute)
  • 오승용 (한국해양연구원 해양생물자원연구본부) ;
  • 노충환 (한국해양연구원 해양생물자원연구본부)
  • Published : 2006.08.01

Abstract

An experiment was conducted to investigate the effects of four water temperatures (10, 15, 20, and $25^{\circ}C$) in combination with three photoperiods (24L:0D, 12L: 12D, and OL:24D) on the oxygen consumption rate of juvenile dark-banded rockfish, Sebastes inermis (mean body weight $20.5{\pm}0.7g$). The oxygen consumption rates of S. inermis were measured in triplicate for 24 hours using a continuous flow-through respirometer. Different combinations of water temperatures and photoperiods resulted in significant differences in the mean oxygen consumption rate of S. inermis (P<0.001). The oxygen consumption increased with increasing water temperatures for all photoperiod treatments (P<0.01). Mean oxygen consumption rates at 10, 15,20 and $25^{\circ}C$ ranged $178.3\sim283.5,\;386.7\sim530.7,\;529.2\sim754.3$ and $590.0\sim785.5mg\;O_2kg^{-1}h^{-1}$, respectively. $Q_{10}$ values ranged $3.17\sim5.51$ between 10 and $15^{\circ}C,\;1.87\sim2.10$ between 15 and $20^{\circ}C$ and $1.08\siml.24$ between 20 and $25^{\circ}C$, respectively. Fish held in continuous darkness (OL:24D) used consistently less okygen than fish exposed to continuous light (P<0.05). The mean oxygen consumption offish in a 12L:12D photoperiod was higher than that offish in 24L:0D and 0L:24D photoperiods under all temperature treatments except $10^{\circ}C$. The oxygen consumption of fish exposed to the 12L:12D photoperiod was significantly higher during the light phase than during the dark phase under all temperature treatments except $10^{\circ}C\;(P<0.05)$. This study provides empirical data for estimating oxygen consumption of S. inermis under given condition. This result has application for culture management and bioenergetic model for growth of this species.

수온과 광주기에 따른 볼락 치어의 대사율 변화를 조사하기 위해 평균 무게 $20.5{\pm}0.7g$을 대상으로 수온(10, 15, 20, $25^{\circ}C$)과 광주기(24L:0D, 12L:12D, 0L:24D)에 따른 산소 소비율은 측정하였다. 12가지 실험 조합의 산소 소비율은 유수식 형태의 호흡실을 이용하여 24시간 동안, 3반복 측정하였다. 수온과 광주기 그리고 두 인자의 상호작용 모두가 볼락 치어의 산소 소비율에 유의한 영향을 미쳤다(P<0.001). 각 광주기 조건에서 수온 상승에 따라 산소 소비율은 유의적으로 증가하였다(P<0.01). 10, 15, 20 그리고 $25^{\circ}C$에서의 시간당 평균 산소 소비율은 각각 $178.3\sim283.5,\;386.7\sim530.7,\;529.2\sim754.3$ 그리고 $590.0\sim785.5mg\;O_2kg^{-1}h^{-1}$였으며, $Q_{10}$ 값은 $10\sim15,\;15\sim20,\;25\sim25^{\circ}C$에서 각각 $3.17\sim5.51,\;1.87\sim2.10,\;1.08\sim1.24$이었다. 연속 명기(24L:0D)에서의 산소 소비율은 연속 암기(0L:24D)에서보다 유의하게 높았다(P<0.05). $10^{\circ}C$를 제외한 모든 수온 조건에서 12L:12D에서 가장 높은 산소 소비율을 보였으며, 24L:0D의 명기에서의 산소 소비율은 같은 조건의 암기 때보다 유의하게 높은 산소 소비율을 보였다(P<0.05). 이 실험 결과는 각 수온과 광주기 조건에서의 볼락 치어의 산소 소비율을 파악할 수 있으며, 사육관리 및 생리적 반응 정량화를 위한 생체역학 모델 결정에 활용할 수 있다.

Keywords

References

  1. Beamish, F. W. H., 1964. Seasonal changes in the standard rate of oxygen consumption of fishes. Can. J. Zool., 42, 189-194 https://doi.org/10.1139/z64-017
  2. Biswas, A. K. and T. Takeuchi, 2002. Effect of different photoperiod cycles on metabolic rate and energy loss of both fed and unfed young tilapia Oreochromis niloticus: Part II. Fish. Sci., 68, 543-553 https://doi.org/10.1046/j.1444-2906.2002.00460.x
  3. Bjornsson, B. T., 1997. The biology of salmon growth hormone: from daylight to dominance. Fish Physiol. Biochem., 17, 9-24 https://doi.org/10.1023/A:1007712413908
  4. Brett, J. R., 1964. The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Bd. Can., 21, 1183-1226 https://doi.org/10.1139/f64-103
  5. Brett, J. R. and T. D. D. Groves, 1979. Physiological energetics. (in) Fish Physiology, (ed.) W. H. Hoar, D. J. Randall and J. R. Brett, Academic Press, New York, pp. 279-352
  6. Bridges, C. R., 1988. Respiratory adaptations in intertidal fish. Am. Zool., 28, 79-96 https://doi.org/10.1093/icb/28.1.79
  7. Dalla Via, J., P. Villani, E. Gasteiger and H. Niederstätter, 1998. Oxygen consumption in sea bass fingerling Dicentrarchus labrax exposed to acute salinity and temperature changes: metabolic basis for maximum stocking density estimations. Aquaculture, 169, 303-313 https://doi.org/10.1016/S0044-8486(98)00375-5
  8. Fonds, M., R. Cronie, A. D. Vethaak and P. Van Der Puly, 1992. Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Neth. J. Sea Res., 29, 127-143 https://doi.org/10.1016/0077-7579(92)90014-6
  9. Forsberg, O. L., 1994. Modeling oxygen consumption rates of post-smolt Atlantic salmon in commercial-scale landbased farms. Aquac. Int., 2, 180-196
  10. Fry, F. E. J., 1971. The effect of environmental factors on the physiology of fish. (in) Fish Physiology, (ed.) W.S. Hoar and D. J. Randall, Academic Press, New York, pp. 1-98
  11. Imsland, A. K., A. Folkvor and S. O. Stefansson, 1995. Growth, oxygen consumption and activity of juvenile turbot (Scophthalmus maximus L.) reared under different temperatures and photoperiods. Neth. J. Sea Res., 34, 149-159 https://doi.org/10.1016/0077-7579(95)90023-3
  12. Jo, J. Y. and Y. H. Kim, 1999. Oxygen consumption of far eastern catfish, Silurus asotus, on the different water temperatures and photoperiods. J. Korean Fish. Soc., 32, 56-61
  13. Jobling, M., 1982. A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J. Fish Biol., 20, 501-516 https://doi.org/10.1111/j.1095-8649.1982.tb03951.x
  14. Jonassen, T. M., A. K. Imsland, S. Kadowaki and S. O. Stefansson, 2000. Interaction of temperature and photoperiod on growth of Atlantic halibut Hippoglossus hippoglossus L. Aquac. Res., 31, 219-227 https://doi.org/10.1046/j.1365-2109.2000.00447.x
  15. Kaushik, S. J., 1998. Nutritional bioenergetics and estimation of waste production in non-salmonids. Aqua. Liv. Res., 11, 211- 217 https://doi.org/10.1016/S0990-7440(98)89003-7
  16. Kim, C. H. and P. Chin, 1995. The effects of dietary energy/protein ratio on oxygen consumption, ammonia nitrogen excretion and body composition in juvenile rockfish, Sebastes schlegeli. J. Korean Fish. Soc., 28, 412-420
  17. Kim, I. N., Y. J. Chang and J. Y. Kwon, 1995. The patterns of oxygen consumption in six species of marine fish. J. Korean Fish. Soc., 28, 373-381
  18. Kim, W. S., J. M. Kim, S. K. Yi and H. T. Hur, 1997. Endogenous circadian rhythm in the river puffer fish Takifugu obscurus. Mar. Ecol. Prog. Ser., 153, 293-298 https://doi.org/10.3354/meps153293
  19. Lyytikäinen, T. and M. Jobling, 1998. The effects of temperature fluctuations on oxygen consumption and ammonia excretion of underyearling Lake Inari Arctic charr. J. Fish Biol., 52, 1186- 1198
  20. Mitsunaga, Y., W. Sakamoto, N. Arai and A. Kasai, 1999. Estimation of the metabolic rate of wild red sea bream Pagrus major in different water temperatures. Nippon Suisan Gakkaishi 65, 48-54 https://doi.org/10.2331/suisan.65.48
  21. Nagarajan K. and V. Gopal, 1983. Effect of photoperiod on oxygen consumption and food utilization in Tilapia mossambica Peters. Proc. Natl. Acad. Sci. India, 53B, 217-225
  22. Oh, S. Y. and C. H. Noh, 2006. Changes of water quality during the seed production period of dark-banded rockfish Sebastes inermis in large scale tanks. J. Aquaculture, 19, 25-32
  23. Roberts, J. P., 1990. Energy-dense feeds help the environment. Fish Farmer, 7, 50-51
  24. Ross, L. G., and R. W. McKinney, 1988. Respiratory cycles in Oreochromis niloticus (L.) measured using a six-channel microcomputer-operated respirometer. Comp. Biochem. Physiol., 89, 637-643 https://doi.org/10.1016/0300-9629(88)90846-8
  25. Spanopoulos-Hernández, M., C. A. Martínez-Palacios, R. C. Vanegas-Pérez, C. Rosas and L. G. Ross, 2005. The combined effects of salinity and temperature on the oxygen consumption of juvenile shrimps Litopenaeus stylirostris (Stimpson, 1874). Aquaculture, 244, 341-348 https://doi.org/10.1016/j.aquaculture.2004.11.023
  26. Withey, K.G. and R.L. Saunders, 1973. Effect of reciprocal photoperiod regime on standard rate of oxygen consumption of postsmolt Atlantic salmon (Salmo salar). J. Fish. Res. Bd. Can., 30, 1898-1900 https://doi.org/10.1139/f73-307
  27. Wuenschel, M.J., A.R. Jugovich and J.A. Hare, 2005. Metabolic response of juvenile gray snapper (Lutjanus griseus) to temperature and salinity: Physiological cost of different environments. J. Exp. Mar. Biol. Ecol., 321, 145-154 https://doi.org/10.1016/j.jembe.2005.01.009
  28. Wuenschel, M. J., R. G. Werner and D. E. Hoss, 2004. Effect of body size, temperature and salinity on the routine metabolism of larval and juvenile spotted seatrout. J. Fish Biol., 64, 1088- 1102 https://doi.org/10.1111/j.1095-8649.2004.00374.x