Numerical Study on Slanted Cubical-Cavity Natural Convection

경사진 3차원 캐비티내 자연대류현상에 관한 수치적 연구

  • 명현국 (국민대학교 기계.자동차공학부) ;
  • 김종은 (국민대학교 대학원 기계공학과)
  • Published : 2006.09.01

Abstract

Natural convection flows in a cubical air-filled slanted cavity that has one pair of opposing faces isothermal at different temperatures, $T_h\;and\;T_c$, respectively, the remaining four faces having a linear variation from $T_c\;toT_h$ are numerically simulated by a solution code (PowerCFD) using unstructured cell-centered method. Special attention is paid to three-dimensional flow and thermal characteristics according to a new orientation (diamond type) for the cubical-cavity benchmark problem in natural convection. Comparisons of the average Nusselt number at the cold face are made with experimental benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the laminar convection in a cubical air-filled slanted cavity with differentially heated walls.

Keywords

References

  1. Fusegi, T., Hyun, J. M., Kuwahara, K. and Farouk, B., 1991, A numerical study of threedimensional natural convection in a differentially heated cubical enclosure, Int. J. Heat Mass Transfer, Vol. 34, No.6, pp. 1543-1557 https://doi.org/10.1016/0017-9310(91)90295-P
  2. Pallares, J., Cuesta, I., Grau, F. X. and Francese Giralt, 1996, Natural convection in a cubical cavity heated from below at low Rayleigh numbers, Int. J. Heat Mass Transfer, Vol. 39, No. 15, pp.3233-3247 https://doi.org/10.1016/0017-9310(95)00390-8
  3. Leong, W. H., Hollands, K. G. T. and Brunger, A. P., 1998, Experimental Nusselt numbers for a cubical-cavity benchmark problem in natural convection, Int. J. of Heat and Mass Transfer, Vol. 42, pp. 1979-1989 https://doi.org/10.1016/S0017-9310(98)00299-3
  4. Leong, W. H., Hollands, K G. T. and Brunger, A P., 1998, On a physically-realizable benchmark problem in internal natural convection, Int. J. of Heat and Mass Transfer, Vol. 41, pp.3817-3828 https://doi.org/10.1016/S0017-9310(98)00095-7
  5. Myong, H. K, 2006, Numerical study on the characteristics of natural convection flows in a cubical cavity, Trans. KSME Part B, Vol. 30, pp.337-342 https://doi.org/10.3795/KSME-B.2006.30.4.337
  6. Myong, H. K. and Kim, J. E., 2005, Numerical study on the nature of natural convection in a cubical cavity, Proc. of KSME Fall Meeting, Part B, pp. 176-181
  7. Myong, H. K. and Kim, J. 2005, Development of 3-d flow analysis code using unstructured grid system (I) - numerical method, Trans. KSME Part B, Vol. 29, pp. 1049-1056
  8. Myong, H. K., Kim, J. and Kim, J. E., 2005, Development of 3-d flow analysis code using unstructured grid system (II) - code's performance evaluation, Trans. KSME Part B, Vol. 29, pp. 1057-1064
  9. Mamun, M. A. M., Leong, W. H., Hollands, K. G. T. and Johnson, D. A, 2003, Cubicalcavity natural-convection benchmark experiments: an extension, Int. J. of Heat and Mass Transfer, Vol. 46, pp.3655-3660 https://doi.org/10.1016/S0017-9310(03)00155-8
  10. Mamun, M. A. M., Leong, W. H., Hollands, K G. T. and Johnson, D. A., 2005, Erratum to: cubical-cavity natural-convection benchmark experiments: an Extension [Int. J. of Heat and Mass Transfer 46 (2003) 3655-3660], Int. J. of Heat and Mass Transfer, Vol. 48, p. 1224 https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.001
  11. Mamun, M. A. M., Leong, W. H., Hollands, K G. T. and Johnson, D. A., 2005, Erratum to: cubical-cavity natural-convection benchmark experiments: an Extension, Int. J. of Heat and Mass Transfer, Vol. 48, p. 1224 https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.001
  12. Hortmann, M., Peric, M. and Scheuerer, G., 1990, Finite volume multigrid prediction of laminar natural convection: benchmark solution, Int. J. for Num. Meth. in Fluids, Vol. 11, pp. 189-207 https://doi.org/10.1002/fld.1650110206