Preparation and Characterization of Random Copolymer Electrolyte Membranes Containing PFCB (Perfluorocyclobutane) Group

PFCB (Perfluorocyclobutane) Group을 포함한 랜덤 공중합체 고분자 전해질 막 제조 및 특성연구

  • Kim Jeong-Hoon (Interface Materials and Process Team, New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Kim Dong-Jin (Interface Materials and Process Team, New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Chang Bong-Jun (Interface Materials and Process Team, New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Lee Soo-Bok (Interface Materials and Process Team, New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Joo Hyeok-Jong (Department of Polymer Science and Engineering, Chungnam National University)
  • 김정훈 (한국화학연구원 계면재료공정연구실) ;
  • 김동진 (한국화학연구원 계면재료공정연구실) ;
  • 장봉준 (한국화학연구원 계면재료공정연구실) ;
  • 이수복 (한국화학연구원 계면재료공정연구실) ;
  • 주혁종 (충남대학교 고분자공학과)
  • Published : 2006.09.01

Abstract

This study is about the preparation and characterization of sulfonated random copolymer membranes containing perfluorocyclobutane (PFCB), fluorenyl, and sulfonyl units. The polymers were prepared through three synthetic steps, that is, the synthesis of a trofluorovinylether-terminated monomer, its thermal polymerization, and post-sulfonation using chlorosulfonic acid. A series of sulfonated random copolymers with different ion exchange capacity (IEC) were prepared by changing contents of fluorenyl uints in polymers with fixed molar ratio of chlorosulfonic acid during the post-sulfonation reaction. All the synthesized compounds were characterized by FT-lR, $^1H-NMR$, $^{19}F-NMR$, and Mass spectroscopy. As the content of sulfonated fluorenyl units increased, the IEC, water uptake, and ion conductivity of the sulfonated random copolymer membranes increased. The sulfonated random copolymer S-1 and S-2 showed higher values of ion conductivity than the Nafion-115 in a wide range of temperatures ($25{\sim}80^{\circ}C$).

본 연구는 불소관능기인 perfluorocyclobutane (PFCB), fluorenyl, sulfonyl계 방향족 화합물을 동시에 포함하는 술폰화된 랜덤 고분자 전해질 막의 제조 및 그 특성에 관한 것이다. 이러한 고분자 전해질 막은 세단계의 합성, 즉 trifluorovinyloxy그룹을 양말단에 포함하는 단량체의 합성, 중부가반응 형태의 열중합, 그리고 chlorosulfonic acid를 이용한 후술폰화를 통하여 얻어졌다. 후술폰화 반응은 고분자 내에 포함된 fluorenyl기의 함량에 따라 일정한 몰비의 술폰화제 비율로 고정하여 진행되었으며, 이에 따라 다양한 이온교환 능력(IEC)을 가지는 고분자를 쉽게 합성할 수 있었다. 제조된 단량체 및 고분자들의 구조와 순도는 각각 FT-IR과 NMR 그리고 질량분석기를 통하여 확인되었다. 술폰화된 fluorenyl기가 많아질수록 술폰화도와 이온교환 능력이 증가하는 것을 확인할 수 있었고 그에 따른 함수율도 역시 증가하는 거동을 보였다. 술폰화된 고분자들의 이온전도도를 측정한 결과 술폰화도가 증가할수록 이온 전도도가 증가하는 것을 관찰할 수 있었다, 이렇게 제조된 전해질막 중 S-1과 S-2의 경우 다양한 온도범위($25{\sim}80^{\circ}C$)에서 상용 전해질막인 Nafion-115를 능가하는 우수한 이온전도도를 나타냈다.

Keywords

References

  1. J. Stephens, 'Fuel processing for fuel cell power systems', Fuel Cells Bulletins, 12, 6 (1999)
  2. L. Carrette, K. A. Friedrich, and U. Stimming, 'Fundamentals and Applications', Fuel cells, 1, 1 (2001)
  3. R. K. Ahluwalia, X. Wang, A. Rousseau, and R. Kumar, 'Fuel economy of hydrogen fuel cell vehicles', J. Power Sources, 130, 192 (2004) https://doi.org/10.1016/j.jpowsour.2003.12.061
  4. K. D. Kreuer, 'On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells', J. Membr. Sci., 185, 29 (2001) https://doi.org/10.1016/S0376-7388(00)00632-3
  5. O. Savadogo, 'Emerging membrane for electro-chemical system: (I) solid polymer electrolyte membranes for fuel cell systems', J. New. Mat. Electrochem. Systems, 1, 47 (1998)
  6. D. J. Kim, B. J. Chang, C. K. Shin, J. H. Kim, S. B. Lee, and H. J. Joo, 'Preparation and characterization of fluorenyl polymer electrolyte membranes containing PFCB groups', Membrane J., 16, 16 (2006)
  7. Y. Yang and S. Holdcroft, 'Synthetic strategies for controlling the morphology of proton conducting polymer membranes', Fuel cells, 2, 171 (2005)
  8. Z. Shi and S. Holdcroft, 'Synthesis and proton conductivity of partially sulfonated poly([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) block copolymers', Macromolecules, 38, 4193 (2005) https://doi.org/10.1021/ma0477549
  9. B. Kim, J. Kim, and B. Jung, 'Morphology and transport properties of protons and methanol through partially sulfonated block copolymers', J. Membr. Sci., 250, 175 (2005) https://doi.org/10.1016/j.memsci.2004.10.025
  10. J. Kim, B. Kim, and B. Jung, 'Proton conductivities and methanol permeailities of membranes made form partially sulfonated polystyrene-block-poly(ethy-lene-ran-butylene)-block-polystyrene copolymers', J. Membr. Sci., 207, 129 (2002) https://doi.org/10.1016/S0376-7388(02)00138-2
  11. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I. H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, 'Structural characterization and surface modification of sulfonated polystyrene-(ethylene-butylene)-styrene triblock proton exchange membranes', J. Membr. Sci., 214, 245 (2003) https://doi.org/10.1016/S0376-7388(02)00555-0
  12. Y. Yang, Z. Shi, and S. Holdcroft, 'synthesis of sulfonated polysulfone-block-PVDF copolymers: enhancement of proton conductivity in low ion exchange capacity membranes', Macromolecules, 37, 1678 (2004) https://doi.org/10.1021/ma035659e
  13. C. K. Shin, G. Maier, B. Andreaus, and G. G. Scherer, 'Block copolymer ionomers for ion conductive membranes', J. Membr. Sci., 245, 147 (2004) https://doi.org/10.1016/j.memsci.2004.07.027
  14. Q. Pei and Y. Yang, 'Efficient photoluminescence and electroluminescence from a soluble polyfluorene', J. Am. Chem. Soc., 118, 7416 (1996) https://doi.org/10.1021/ja9615233
  15. H. Kameshima, N. Nemoto, and T. Endo, 'Synthesis and properties of fluorene-based fluorinated polymers', J. Polym. Sci., Part A: Polym. Chem., 39, 3143 (2001) https://doi.org/10.1002/pola.1296
  16. D. A. Babb, 'Polymers from the thermal $(2{\prod}+2{\prod})$ cyclodimerization of fluorinated olefins', Plenum Press, New York, 25 (1999)
  17. D. A. Babb, B. R. Ezzell, K. S. Clement, W. F. Richey, and A. P. Kennedy, 'Perfluorocyclobutane aromatic ether polymers', J. Polym. Sci., Part A: Polym. Chem., 31, 3465 (1993) https://doi.org/10.1002/pola.1993.080311336
  18. A. P. Kennedy, D. A. Babb, J. N. Bremmer, and A. J. Pasztor Jr, 'Perfluorocyclobutane aromatic ether polymers. II. thermal/oxidative stability and decomposition of a thermoset polymer', J. Polym. Sci., Part A: Polym. Chem., 33, 1859 (1995) https://doi.org/10.1002/pola.1995.080331113
  19. S. Wong, H. Ma, A. K. Y. Jen, R. Barto, and C. W. Frank, 'High fluorinated fluorovinyl aryl ether monomers and perfluorocyclobutane aromatic ether polymers for optical waveguide applications', Macromolecules, 36, 8001 (2003) https://doi.org/10.1021/ma034467g
  20. J. Ghim, D. S Lee, B. G. Shin, D. Vak, D. K. Yi, M. J Kim, H. S. Shim, J. J. Kim, and D. Y. Kim, 'Optical properties of perfluorocyclobutane aryl ether polymers for polymer photonic devices', Macromolecules, 37, 5724 (2004) https://doi.org/10.1021/ma035161c
  21. X. Shang, S. Tian, L. Kong, and Y. Meng, 'Synthesis and characterization of sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane', J. Membr. Sci., 266, 94 (2005) https://doi.org/10.1016/j.memsci.2005.05.014
  22. V. Saarinen, T. Kallio, M. Paronen, P. Tikkanen, E. Rauhala, and K. Kontturi, 'New ETFE-based membrane for direct methanol fuel cell', Electrochim. Acta, 50, 3453 (2005) https://doi.org/10.1016/j.electacta.2004.12.022
  23. C. Lee, S. Sundar, J. Kwon, and H. S. Han, 'Structure-property correlations of sulfonated polyimides. I. Effect of bridging groups on membrane properties', J. Polym. Sci., Part A: Polym. Chem., 42, 3612 (2004) https://doi.org/10.1002/pola.20214
  24. C. Lee, S. Sundar, J. Kwon, and H. S. Han, 'Structure-property correlations of sulfonated polyimides. II. Effect of bridging groups on membrane properties', J. Polym. Sci., Part A: Polym. Chem., 42, 3621 (2004) https://doi.org/10.1002/pola.20215