Evaluation of Biogenic Amines in Korean Commercial Fermented Foods

국내 유통 발효식품 중 biogenic amines 함량 분석

  • 한규홍 (부산지방식품의약품안전청 시험분석센터) ;
  • 반경녀 (부산지방식품의약품안전청 시험분석센터) ;
  • 손영욱 (부산지방식품의약품안전청 시험분석센터) ;
  • 장미란 (부산지방식품의약품안전청 시험분석센터) ;
  • 이창희 (부산지방식품의약품안전청 시험분석센터) ;
  • 김소희 (부산지방식품의약품안전청 시험분석센터) ;
  • 김대병 (부산지방식품의약품안전청 시험분석센터) ;
  • 김선봉 (부경대학교 식품공학과) ;
  • 조태용 (부산지방식품의약품안전청 시험분석센터)
  • Published : 2006.12.31

Abstract

High performance liquid chromatographic methods for the simultaneous determination of 12 biogenic amines were developed and contents of biogenic amines in 23 varieties of Korean commercial fermented food were analyzed. Dansyl derivatives of biogenic amine were very stable and had good peak resolution. Except agmatine, the recovery of biogenic amines from soybean paste with extraction of 0.1 N HC1 added biogenic amines to soybean paste was greater 85%. The calibration curve showed good linearity over a concentration range up to 50 ${\mu}g/mL$. In the determination of biogenic amine level in Korean commercial fermented foods, doenjang and chungkukjang (fermented soybean pastes), soy sauce, anchovy and pacific sand lance liquid jeotkal (fermented fish sauce products), and cabbage kimchi had high level biogenic amines. Especially, traditional doenjang had a histamine (HIS) level of 952.0 mg/kg, a tyramine (TYR) level of 1,430.7 mg/kg. Most cheese had low level of biogenic amines, but one Gouda cheese had a tyramine (TYR) level of 97.5 mg/kg. A low level of biogenic amines was detected in wines, beer, yoghurt, and sausage. Putrescine (PUT), cadaverine (CAD), tryptamine (TRY), histamine (HIS), tyramine (TYR), and 2-phenylethylamine (PHE) were mainly formed in fermented foods by the action of microorganism, so their levels were high with a range. On the other hand, spermidine (SPD), spermine(SPM), serotonin (SER), noradrenaline (NOR), and dopamine (DOP) were formed originally via biosynthesis with consequent low level.

국내 유통발효식품 중 BAs 함량을 분석하고자 HPLC를 이용한 최적 분석방법을 확립하고, 유통 발효식품 중 BAs 함량을 조사하였다. BAs의 분석에는 0.1N 염산으로 추출한 후 dansyl 유도체를 사용하는 방법이 최적 분석방법으로 선택이 되었고, 검출한계가 0.10 ${\mu}g/mL$ 이하로 나타났다. 식품별 BAs의 함유량은 장류의 경우 한식된장에서 HIS 및 TYR의 함량이 높게 나타났고, 청국장의 경우도 유사하였다. 특히 전통적으로 생산한 된장과 청국장에서 BAs함량이 높게 나타나 종국 및 제조공정의 개선이 필요한 것으로 사료되었다. 간장의 경우 양조간장과 전통간장의 차이가 크지 않았으나, 젓갈류 중에서는 멸치액젓과 까나리 액젓에서 PUT, CAD, TRY, HIS, 및 TYR의 함량이 높게 나타났다. 과실주와 맥주에서는 보통 발효에 관여하는 효모가 BAs 생성능이 없기 때문에 낮은 HIS 수치를 보여주었고, 치즈에서는 TYR의 농도가 약간 높게 나왔을 뿐 전체적인 BAs의 함량은 낮은 수준이었다. 배추김치의 경우 PUT, HIS 및 TYR의 함량이 높게 나타났으나, 김치 제조에 부재료로 들어가는 멸치액젓과 까나리 액젓이 BAs의 함량을 높이는 것으로 추정되었다. 각 식품의 BAs의 함량 결과를 국민건강${\cdot}$영양조사의 일일섭취량에 대입하여 일일섭취량을 조사한 결과 매우 적은 수준으로 나타났으나 TYR의 MAOIs를 복용하는 환자의 경우 BAs가 많이 함유한 식품의 섭취는 가급적 피하는 것이 좋을 것으로 사료된다.

Keywords

References

  1. Ten Brink B, Damink C, Joosten HM, Huis in't Veld JH. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11: 73-84 (1990) https://doi.org/10.1016/0168-1605(90)90040-C
  2. Kalac P, Krausova P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 90: 219-230 (2005) https://doi.org/10.1016/j.foodchem.2004.03.044
  3. Huis in't Veld JH, Hose H, Schaafsma GJ, Silla H, Smith JE. Health aspects of food biotecnology. pp. 273-297. In: Processing and Quality of Foods Vol. 2. Food Biotechnology: Avenues to Health and Nutritious Products. Zeuthen P, Cheftel JC, Ericksson C, Gormley TR, Link P, Paulus K(eds). Elsvier Applied Science, London and New York (1990)
  4. Fritz SB, Baldwin JL. Pharmacologic food reactions. pp. 395-407. In: Food allergy: Adverse Reactions to Foods and Food Additives. 3rd ed. Metcalfe DD, Sampson HA, Simon RA(eds). Blackwell Publishing, Malden Massachusetts, USA (2003)
  5. Tylor SL. Histamine food poisoning: toxicology and clinical aspects. Crit. Rev. Toxicol. 17: 91-128 (1986) https://doi.org/10.3109/10408448609023767
  6. Chu CH, Bjeldanes LF. Effects of diamines polyamines and tuna fish extracts on the binding of histamine to mucin in vitro. J. Food Sci. 47: 7980-7988 (1981)
  7. Bjeldanes LF, Schutz DE, Morris MM. On the aetiology of scombroid poisoning: cadaverine potentiation histamine toxicity in guinea pig. Food Cosmet. Toxicol. 16: 157-159 (1978) https://doi.org/10.1016/S0015-6264(78)80196-5
  8. Blackwell B. Hypertensive crises due to monoamine-oxidase inhibitors. Lancet 38: 849-850 (1963)
  9. Joostern HMLG. The biogenic amine contents of dutch cheese and their toxicological significance. Neth. Milk Dairy J. 42: 25-42 (1988)
  10. Vidal-Carou MC, Ambatlle-Espunyes A, Ulla-Ulla MC, MarineFont A. Histamine and tyramine in Spanish wines: their formation during the winemaking process, Am. J. Enol. Vitic. 41: 160-167 (1990)
  11. Suzzi G, Gardini F. Biogenic amines in dry fermented sausages: a review. Int. J. Food Microbiol. 88: 41-54 (2003) https://doi.org/10.1016/S0168-1605(03)00080-1
  12. Komprada T, Smela D, Pechova P, Kalhotka L, Stencl J, Klejdus B. Effect of starter culture, spice mix and storage time and temperature on biogenic amine content of dry fermented sausages. Meat Sci. 67: 607-616 (2004) https://doi.org/10.1016/j.meatsci.2004.01.003
  13. Bover-Cid S, Izquierdo-Pulido M, Vidal-Carou MC. Effect of proteolytic starter cultures of Staphylocoiccus sp. on biogenic amine formation during the ripening of dry fermented sausages. lnt. J. Food Microbiol. 46: 95-104 (1999) https://doi.org/10.1016/S0168-1605(98)00170-6
  14. Novella-Rodriguez S, Veciana-Nogues MT, Roig-Sagues AX, Trujillo-Mesa AJ, Vidal-Carou MC, Influence of starter and nonstarter on the formation of biogenic amine in goat cheese during ripening, J. Dairy Sci. 85: 2471-2478 (2002) https://doi.org/10.3168/jds.S0022-0302(02)74329-4
  15. Joostern HMLJ, Nunez M. Prevention of histamine formation in cheese by bacteriocin-producing lactic acid bacteria, Appl. Environ. Microbiol. 62: 1178-1181 (1996)
  16. The Pharmaceutical Society of Japan. Methods of Analysis in Health Science. Kanehara & Co., Ltd., Tokyo, Japan. pp. 180-182 (2005)
  17. Moret S, Conte LS. High-performance liquid chromatographic evaluation of biogenic amines in foods: an analysis of different methods of sample preparation in relation to food characteristics. J. Chromatogra. A. 729: 363-369 (1996) https://doi.org/10.1016/0021-9673(95)00961-2
  18. Busto O, Guasch J, Borrull F. Biogenic amines in wine: a review of analytical methods. J. Int. Sci. Vigne. Vin. 30: 85-101 (1996)
  19. Stratton JE, Hutkins RW, Taylor SL. Biogenic amines in cheese and other fermented foods: a review. J. Food Prot. 54: 460-470 (1991) https://doi.org/10.4315/0362-028X-54.6.460
  20. Kalac P, Spicka J, Krizek M, Steidlova S, Pelikanova T. Concentrations of seven biogenic amines in sauerkraut. Food Chem. 67: 275-280 (1999) https://doi.org/10.1016/S0308-8146(99)00131-4
  21. Korean Health Industry Development Institute. Report on 1998 national health and nutrition survey (dietary intake survey). Korean Ministry of Health & Welfare, Seoul, Korea, pp. 57-68 (1999)
  22. Korean Health Industry Development Institute. Report on 2001 national health and nutrition survey nutrtition survey (I). Korean Ministry of Health & Welfare, Seoul, Korea, pp. 99-112 (2002)
  23. Horowitz D, Lovenberg W, Engelmann K. Monoamine oxidase inhibitors, tyramine, and cheese. JAMA, 188: 1108 (1964) https://doi.org/10.1001/jama.1964.03060390010002
  24. Bieck PR, Antonin KH. Oral tyramine pressor test and the safety of monoamine oxidase inhibitor drugs: comparison of brofaromine and tranylcypromine in healthy subjects. J. Clin. Psyachopharmacol. 8: 237-245 (1988)