Effects of E-beam treatment on the interfacial and mechanical properties of henequen/polypropylene composites

  • Cho, Dong-Hwan (Polymer/Bio-Composites Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Hyun-Seok (Polymer/Bio-Composites Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Han, Seong-Ok (Functional Materials Research Centre, Korea Institute of Energy Research) ;
  • Drzal, Lawrence T. (Composite Materials and Structures Centre, Michigan State University)
  • Published : 2007.12.01

Abstract

In the present study, chopped henequen natural fibers without and with surface modification by electron beam (E-beam) treatment were incorporated into a polypropylene matrix. Prior to composite fabrication, a bundle of raw henequen fibers were treated at various E-beam intensities from 10 kGy to 500 kGy. The effect of E-beam intensity on the interfacial, mechanical and thermal properties of randomly oriented henequen/polypropylene composites with the fiber contents of 40 vol% was investigated focusing on the interfacial shear strength, flexural and tensile properties, dynamic mechanical properties, thermal stability, and fracture behavior. Each characteristic of the material strongly depended on the E-beam intensity irradiated, showing an increasing or decreasing effect. The present study demonstrates that henequen fiber surfaces can be modified successfully with an appropriate dosage of electron beam and use of a low E-beam intensity of 10 kGy results in the improvement of the interfacial properties, flexural properties, tensile properties, dynamic mechanical properties and thermal stability of henequen/polypropylene composites.

Keywords

References

  1. A. K. Mohanty, M. Misra and G. Hinrichsen, Biofibers, biodegradable polymers and biocomposites: an overview, Macromol. Mater. Engng. 276/277, 1-24 (2000). https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  2. A. K. Mohanty, M. Misra and L. T. Drzal, Surface modifications of natural fibers and performance of the resulting biocomposites: an overview, Composite Interfaces 8, 313-343 (2001). https://doi.org/10.1163/156855401753255422
  3. A. Baillie, Eco-composites, Compos. Sci. Technol. 63, 1223-1224 (2003). https://doi.org/10.1016/S0266-3538(03)00090-3
  4. M. Cazaurang-Martínez, P. Herrera-Franco, P. I. Gonzalez-Chi and M. Aguilar-Vega, Physical and mechanical properties of henequen fibers, J. Appl. Polym. Sci. 43, 749-756 (1991). https://doi.org/10.1002/app.1991.070430412
  5. K. Joseph, R. D. T. Filho, B. James, S. Thomas and L. H. de Carvalho, A review on sisal reinforced polymer composites, Revista Brasileira de Engenharia Agricola e Ambiental 3, 367- 379 (1999). https://doi.org/10.1590/1807-1929/agriambi.v3n3p367-379
  6. Y. Pang, Effect of electron beam irradiation on the interfacial and thermal properties of natural fiber henequen/polymer biocomposites, MS Thesis, Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Korea (2005).
  7. A. Cho, S. G. Lee, W. H. Park and S. O. Han, Eco-friendly biocomposite materials using biofibers, Polym. Sci. Technol. 13, 460-476 (2002).
  8. S. V. Joshi, L. T. Drzal, A. K. Mohanty and S. Arora, Are natural fiber composites environmentally superior to glass fiber reinforced composites?, Composites: Part A 35, 371-376 (2004). https://doi.org/10.1016/j.compositesa.2003.09.016
  9. R. Fisher, Natural fibers and green composites, Compos. Manuf. March, 20-23 (2006).
  10. A. B. Strong, Fundamentals of Composites Manufacturing: Materials, Methods, and Applications. Society for Manufacturing Engineer, Dearborn, MI, USA (1989).
  11. S. M. Lee, D. Cho, W. H. Park, S. G. Lee, S. O. Han and L. T. Drzal, Novel silk/poly(butylene succinate) biocomposites: the effect of short fiber content on their mechanical and thermal properties, Compos. Sci. Technol. 65, 647-657 (2005). https://doi.org/10.1016/j.compscitech.2004.09.023
  12. S. M. Lee, S. O. Han, D. Cho, W. H. Park and S. G. Lee, Influence of chopped fiber length on the mechanical and thermal properties of silk fiber-reinforced poly(butylene succinate) biocomposites, Polym. Polym. Compos. 13, 479-488 (2005).
  13. L. Y. Mwaikambo and M. P. Ansell, The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement, Die Angew. Makromol. Chem. 272, 108-116 (1999). https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9
  14. K. C. M. Nair, S. Thomas and G. Groeninckx, Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibers, Compos. Sci. Technol. 61, 2519-2529 (2001). https://doi.org/10.1016/S0266-3538(01)00170-1
  15. S. Joseph, M. S. Sreekala, Z. Oommen, P. Koshy and S. Thomas, A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibers and glass fibers, Compos. Sci. Technol. 62, 1857-1868 (2002). https://doi.org/10.1016/S0266-3538(02)00098-2
  16. I. van de Weyenberg, J. Ivens, A. de Coster, B. Kino, E. Baetens and I. Verpoest, Influence of processing and chemical treatment of flax fibers on their composites, Compos. Sci. Technol. 63, 1241-1246 (2003). https://doi.org/10.1016/S0266-3538(03)00093-9
  17. P. Ganan, S. Garbizu, R. Llano-Ponte and I. Mondragon, Surface modification of sisal fibers: effects on the mechanical and thermal properties of their epoxy composites, Polym. Compos. 26, 121-127 (2005). https://doi.org/10.1002/pc.20083
  18. S. G. Lee, S. S. Choi, W. H. Park and D. Cho, Characterization of surface modified flax fibers and their biocomposites with PHB, Macromol. Symp. 197, 89-99 (2003).
  19. A. Y. Chu, M. Y. Kwon, S. G. Lee, D. Cho, W. H. Park and S. O. Han, Interfacial adhesion of silk/PLA biocomposites by plasma surface treatment, J. Soc. Adhes. Interf. Korea 5, 9-16 (2004).
  20. Y. Pang, D. Cho, S. O. Han and W. H. Park, Interfacial shear strength and thermal properties of electron beam-treated henequen fibres reinforced unsaturated polyester composites, Macromol. Res. 13, 453-459 (2005). https://doi.org/10.1007/BF03218480
  21. S. O. Han, D. Cho, W. H. Park and L. T. Drzal, Henequen/poly(butylene succinate) biocomposites: electron beam irradiation effects on henequen fibre and the interfacial properties of biocomposites, Composite Interfaces 12, 231-247 (2006).
  22. Available at www.eb-tech.com.
  23. A. Albano, J. Reyes, M. Ichazo, J. Gonzalez and M. I. Chipara, Influence of gamma irradiation on the thermal stability of blends of PP with previous treated sisal fiber, Polym. Degrad. Stab. 73, 225-235 (2001). https://doi.org/10.1016/S0141-3910(01)00036-2
  24. S. Renneckar, A. G. Zink-Sharp, T. C. Ward and W. G. Glasser, Compositional analysis of thermoplastic wood composites by TGA, J. Appl. Polym. Sci. 93, 1484-1492 (2004). https://doi.org/10.1002/app.20599
  25. S. Wong, R. Shangks and A. Hodzic, Interfacial improvements in poly(3-hydroxybutyrate)-flax fiber composites with hydrogen bonding additives, Compos. Sci. Technol. 64, 1321-1330 (2004). https://doi.org/10.1016/j.compscitech.2003.10.012