DOI QR코드

DOI QR Code

Bifurcation Phase Studies of Belousov-Zhabotinsky Reaction Containing Oxalic Acid and Acetone as a Mixed Organic Substrate in an Open System

  • Basavaraja, C. (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Park, Sung-Hyun (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Jeon, Un-Ji (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Pierson, R. (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Vishnuvardhan, T.K. (Department of Chemistry, Gulbarga University) ;
  • Kulkarni, V.R. (Department of Chemistry, Gulbarga University)
  • Published : 2007.09.20

Abstract

Belousov-Zhabotinsky (BZ) reaction containing oxalic acid and acetone as a mixed organic substrate catalyzed by Ce(IV) in a flow system has been investigated. The reaction system is analyzed by varying flow rate, inflow concentrations, and temperature. Interchangeable oscillating patterns are observed in a certain range of concentrations, and above or below the condition a steady state is obtained. The increase in temperature increases the frequency and decreases the amplitude of oscillations. The apparent activation energy for the system is calculated by using the Arrhenius equation, which means that temperature has a greater effect on the reaction. Bifurcation phase diagrams for the system show the region of oscillations or steady states along with a small region of multistability. Further the behavioral trend observed in this system is discussed by mechanistic character of the system.

Keywords

References

  1. Horvath, J.; Nagy-Ungvarai, Z. S.; Muller, S. C. Phys. Chem. Chem. Phys. 2001, 3, 218
  2. Pelle, K.; Wittmann, M.; Noszticzius, Z.; Lombardo, R.; Sbriziolo, C.; Turco-Liveri, M. L. J. Phys. Chem. A 2003, 107, 2039 https://doi.org/10.1021/jp026713g
  3. Scott, S. K. Oscillations, Waves and Chaos in Chemical Kinetics; Oxford University Press: Oxford, 1994
  4. Field, R. J.; Koros, E.; Noyes, R. M. J. Am. Chem. Soc. 1972, 94, 8649 https://doi.org/10.1021/ja00780a001
  5. Field, R. J.; Forsterling, H. D. J. Phys. Chem. 1986, 90, 5400 https://doi.org/10.1021/j100412a101
  6. Stroot, P. H.; Janjic, D. Helv. Chim. Acta. 1975, 58, 116 https://doi.org/10.1002/hlca.19750580115
  7. Noszticzius, Z.; Magy, S. Kem. Foly. 1979, 85, 330
  8. Weigt, H. R. Z. Chem. 1990, 30, 260 https://doi.org/10.1002/zfch.19900300718
  9. Guedes, M. C.; Faria, R. B. J. Phys. Chem. A 1998, 102, 1973 https://doi.org/10.1021/jp973078j
  10. Rastogi, R. P.; Singh, H. J.; Singh, A. K. Discussion Meeting of Deutsche Bunsengesellschaft fur Physikalische Chemie, Aachen, Germany, preprints, 1979, 1, p 98
  11. Li, H. X.; Jin, R.; Dai, W.; Deng, J. F. Chem. Phys. Lett. 1997, 274, 41 https://doi.org/10.1016/S0009-2614(97)00662-3
  12. Huh, D. S.; Choe, Y. M.; Park, D. Y.; Park, S. H.; Zhao, Y. S.; Choe, S. J. Bull. Korean Chem. Soc. 2005, 26(11), 1682 https://doi.org/10.5012/bkcs.2005.26.11.1682
  13. Adamcikova, L.; Sevcýk, P. Coll. Czech. Chem. Commun. 1982, 47, 2333
  14. Adamcikova, L.; Sevcyk, P. Z. Phys. Chem(Munich). 1982, 132, 251 https://doi.org/10.1524/zpch.1982.132.2.251
  15. Adamcikova, L.; Halinarova, I. Coll. Czech. Chem. Commun. 1985, 50, 1588 https://doi.org/10.1135/cccc19851588
  16. Sevcyk, P.; Adamcikova, L. J. Phys. Chem. 1985, 89, 5178 https://doi.org/10.1021/j100270a011
  17. Gaspar, V.; Galambosi, P. J. Phys. Chem. 1986, 90, 2222 https://doi.org/10.1021/j100401a045
  18. Huh, D. S.; Choe, Y. M.; Park, D. Y.; Park, S. H.; Zhao, Y. S.; Choe, S. J. Bull. Korean Chem. Soc. 2005, 26(2), 219 https://doi.org/10.5012/bkcs.2005.26.2.219
  19. Blume, R.; Bader, H. J. Z. Naturforsch. 1984, 39b, 1795
  20. Adamcikova, L.; Sevcyk, P. Coll. Czech. Chem. Commun. 1986, 51, 2685 https://doi.org/10.1135/cccc19862685
  21. Sevcyk, P.; Adamcikova, L. React. Kinet. Catal. Lett. 1987, 33, 47 https://doi.org/10.1007/BF02066698
  22. Rastogi, R. P.; Husain, M. M.; Chand, P.; Das, M. Ind. J. Chem. 2000, 39A, 679
  23. Basavaraja, C.; Kulkarni, V. R.; Vishnuvardhan, T. K.; Mohan, S.; Iyer, Y. M.; Subba Rao, G. V. Ind. J. Chem. 2005, 44, 1894
  24. Basavaraja, C.; Kulkarni, V. R.; Vishnuvardhan, T. K.; Mohan, S.; Iyer, Y. M.; Subba Rao, G. V. Ind. J. Chem. 2004, 43A, 739
  25. Basavaraja, C.; Kulkarni, V. R. J. Ind. Chem. Soc. 2004, 81, 427
  26. Basavaraja, C.; Kulkarni, V. R. J. Ind. Chem. Soc. 2003, 80, 100
  27. Koros, E. Nature 1974, 251, 703 https://doi.org/10.1038/251703a0
  28. Kumpinsky, E.; Epstein, I. R. J. Phys. Chem. 1985, 89, 688 https://doi.org/10.1021/j100250a027

Cited by

  1. The effect of temperature on the dynamics of a homogeneous oscillatory system operated in batch and under flow vol.4, pp.57, 2014, https://doi.org/10.1039/C4RA03539A
  2. Dynamical Regime of the Phloroglucinol-Based Chemical Oscillator in the Presence of Alcohols: Rebirth of Oscillations after an Inhibition Time vol.49, pp.9, 2017, https://doi.org/10.1002/kin.21106
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  4. Nonlinear Entropy Production in a Reversible Oregonator Model vol.29, pp.5, 2007, https://doi.org/10.5012/bkcs.2008.29.5.1051