DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Study of the Transport Properties of Liquid Argon: The Green-Kubo Formula Revisited

  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Published : 2007.08.20

Abstract

The velocity auto-correlation (VAC) function of liquid argon in the Green-Kubo formula decays quickly within 5 ps to give a well-defined diffusion coefficient because the velocity is the property of each individual particle, whereas the stress (SAC) and heat-flux auto-correlation (HFAC) functions for shear viscosity and thermal conductivity have non-decaying, long-time tails because the stress and heat-flux appear as system properties. This problem can be overcome through N (number of particles)-fold improvement in the statistical accuracy, by considering the stress and the heat-flux of the system as properties of each particle and by deriving new Green-Kubo formulas for shear viscosity and thermal conductivity. The results obtained for the transport coefficients of liquid argon obtained are discussed.

Keywords

References

  1. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Oxford: Oxford Univ. Press: 1987; p 64
  2. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids Oxford: Oxford Univ. Press: 1987; p 81
  3. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations Englewood Cliffs: NJ, Prentice Hall, 1971
  4. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids Oxford: Oxford Univ. Press: 1987; p 48
  5. Lee, S. H.; Park, D. K.; Kang, D. B. Bull. Kor. Chem. Soc. 2003, 24, 178 https://doi.org/10.5012/bkcs.2003.24.2.178
  6. Malevanets, A.; Kapral, R. J. Chem. Phys. 2000, 112, 7260 https://doi.org/10.1063/1.481289
  7. Naghizadeh, J.; Rice, S. A. J. Chem. Phys. 1962, 36, 2710 https://doi.org/10.1063/1.1732357
  8. Cook, G. A. Argon, Helium and the Rare Gases Interscience: NY, 1961
  9. Lee, S. H. In preparation

Cited by

  1. Molecular dynamics simulation study of friction and diffusion of a tracer in a Lennard–Jones solvent vol.127, pp.5-6, 2010, https://doi.org/10.1007/s00214-010-0757-z
  2. Vapor-liquid Interface of Argon by Using a Test-area Simulation Method vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.167
  3. Structural-dynamic properties of infinitely dilute ionic liquid–nonpolar compound systems vol.62, pp.4, 2017, https://doi.org/10.1134/S0036023617040039
  4. Temperature and Moisture Impacts on Asphalt before and after Oxidative Aging Using Molecular Dynamics Simulations vol.7, pp.4, 2017, https://doi.org/10.1061/(ASCE)NM.2153-5477.0000139
  5. Molecular Dynamics Simulation of Thermal Conductivity of Aluminum vol.336, pp.1662-9507, 2013, https://doi.org/10.4028/www.scientific.net/DDF.336.47
  6. Transport properties of carbon dioxide and methane from molecular dynamics simulations vol.141, pp.13, 2014, https://doi.org/10.1063/1.4896538
  7. Mechanisms of the Diffusion of Nonpolar Substances in a Hydrophilic Ionic Liquid vol.92, pp.1, 2018, https://doi.org/10.1134/S0036024417120020
  8. Transport properties of bulk water at 243–550 K: a Comparative molecular dynamics simulation study using SPC/E, TIP4P, and TIP4P/2005 water models pp.1362-3028, 2019, https://doi.org/10.1080/00268976.2018.1562123
  9. Molecular Dynamics Simulation Study for Transport Properties of Diatomic Liquids vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1697
  10. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  11. Transport Properties of Lennard-Jones Mixtures: A Molecular Dynamics Simulation Study vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.641
  12. Viscosity and Diffusion of Small Normal and Isomeric Alkanes: An Equilibrium Molecular Dynamics Simulation Study vol.29, pp.5, 2007, https://doi.org/10.5012/bkcs.2008.29.5.1059
  13. Probe Molecule Diffusion in Small Normal and Isomeric Alkanes: An Equilibrium Molecular Dynamics Simulation Study vol.29, pp.7, 2008, https://doi.org/10.5012/bkcs.2008.29.7.1409
  14. Friction between Two Brownian Particles in a Lennard-Jones Solvent: A Molecular Dynamics Simulation Study vol.31, pp.8, 2007, https://doi.org/10.5012/bkcs.2010.31.8.2402
  15. Statistical approaches to forcefield calibration and prediction uncertainty in molecular simulation vol.134, pp.5, 2007, https://doi.org/10.1063/1.3545069
  16. Pressure Analyses at the Planar Surface of Liquid-Vapor Argon by a Test-Area Molecular Dynamics Simulation vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.3039
  17. Equilibrium Molecular Dynamics Simulation Study for Transport Properties of Noble Gases: The Green-Kubo Formula vol.34, pp.10, 2007, https://doi.org/10.5012/bkcs.2013.34.10.2931
  18. Molecular Dynamics Simulation Study for Shear Viscosity of Water at High Temperatures using SPC/E Water Model vol.35, pp.2, 2007, https://doi.org/10.5012/bkcs.2014.35.2.644
  19. Size Effect on Transport Properties of Gaseous Argon: A Molecular Dynamics Simulation Study vol.35, pp.5, 2007, https://doi.org/10.5012/bkcs.2014.35.5.1559
  20. Size Effect on Transport Properties of Liquid Argon: A Molecular Dynamics Simulation Study vol.58, pp.5, 2007, https://doi.org/10.5012/jkcs.2014.58.5.500
  21. Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases vol.35, pp.12, 2007, https://doi.org/10.5012/bkcs.2014.35.12.3527
  22. Molecular Dynamics Simulations of Photo-Induced Free Radical Polymerization vol.60, pp.12, 2020, https://doi.org/10.1021/acs.jcim.0c01156