DOI QR코드

DOI QR Code

Electrochemical Degradation of Benzoquinone in a Flow through Cell with Carbon Fibers

  • Published : 2007.03.20

Abstract

The anodic degradation of benzoquinone(BQ), a model compound for wastewater treatment was carried out using a home-made flow-through electrochemical cell with carbon fibers. To optimize the controlled current electrolysis condition of an aqueous BQ solution, the experimental variables affecting the degradation of BQ, such as the applying current, pH, reaction time, and flow rate of the BQ solution were examined. The degradation products of the oxidation reaction were identified by High Performance Liquid Chromatography and Inductively Coupled Plasma Atomic Emission Spectrometer. Low molecular weight aliphatic acids, and CO2 were the major products in this experiment. The removal efficiency of BQ from the solution increased with the applying current and time. 99.23% of 1.0 × 10-2 M BQ was degraded to aliphatic acids and CO2 when the applying current is 175 mA in a 12 hr electrolysis.

Keywords

References

  1. Brillas, E.; Sauleda, R.; Casado, J. J. Electrochem. Soc. 1998, 145, 759 https://doi.org/10.1149/1.1838342
  2. Kirk, D. W.; Sharifian, H.; Foulkes, F. R. J. Appl. Electrochem. 1985, 15, 285 https://doi.org/10.1007/BF00620944
  3. Gattrell, M.; Kirk, D. W. Can. J. Chem. Eng. 1990, 68, 997 https://doi.org/10.1002/cjce.5450680615
  4. Boye, B.; Dieng, M.; Brillas, E. Environ. Sci. Technol. 2002, 36, 3030 https://doi.org/10.1021/es0103391
  5. Alberici, R. M.; Jardim, W. F. Water Res. 1994, 28, 1845 https://doi.org/10.1016/0043-1354(94)90258-5
  6. Koyama, O.; Kamagata, Y.; Nakamura, K. Water Res. 1994, 28, 895 https://doi.org/10.1016/0043-1354(94)90096-5
  7. Esplugas, S.; Yue, P. L.; Perverz, M. I. Water Res. 1994, 28, 1323 https://doi.org/10.1016/0043-1354(94)90297-6
  8. Lee, S. H.; Oh, J. Y.; Park, Y. C. Bull. Korean Chem. Soc. 2006, 27(4), 489 https://doi.org/10.5012/bkcs.2006.27.4.489
  9. Polcaro, A. M.; Palmsa, S. Ind. Eng. Chem. Res. 1997, 36, 1791 https://doi.org/10.1021/ie960557g
  10. Juttner, K.; Galla, U.; Schmieder, H. Electrochim. Acta 2000, 45, 2575 https://doi.org/10.1016/S0013-4686(00)00339-X
  11. Stefan, M. I.; Bolton, J. R. Environ. Sci. Technol. 1998, 32, 1588 https://doi.org/10.1021/es970633m
  12. Boudenne, J. L.; Cerclier, O. Water Res. 1994, 33, 494 https://doi.org/10.1016/S0043-1354(98)00242-5
  13. Druliolle, H.; Kokoh, K. B.; Hahn, F.; Lamy, C.; Beden, B. J. Electroanal. Chem. 1997, 426, 103 https://doi.org/10.1016/S0022-0728(96)04981-9
  14. Florou, A. B.; Prodromidis, M. I.; Karayannis, M. I.; Tzouwara- Karayanni, S. M. Electroanalysis 1998, 10, 1261
  15. Tennakoon, C. L. K.; Bhardwaj, R. C.; Bockris, J. O. J. Appl. Electrochem. 1996, 26, 18 https://doi.org/10.1007/BF00248184
  16. Comninellis, Ch.; Nerini, A. J. Appl. Electrochem. 1995, 25, 23
  17. De Sucre, V. S.; Watkinson, A. P. Can. J. Chem. Eng. 1981, 59, 52 https://doi.org/10.1002/cjce.5450590106
  18. Bock, C.; MacDougall, B. J. Electrochem. Soc. 1999, 146, 2925 https://doi.org/10.1149/1.1392030
  19. Hofseth, C. S.; Chapman, T. W. J. Electrochem. Soc. 1999, 146, 99
  20. Zhou, M.; Dai, Q.; Lei, L.; Ma, C.; Wang, D. Environ. Sci. Technol. 2005, 39, 363 https://doi.org/10.1021/es049313a
  21. Vlyssides, A.; Barampouti, E. M.; Mai, S. A. Environ. Sci. Technol. 2004, 38, 6125 https://doi.org/10.1021/es049726b
  22. Pulgarin, J. C.; Adler, N.; Peringerr, P.; Comninellis, Ch. Water Res. 1994, 28, 887 https://doi.org/10.1016/0043-1354(94)90095-7
  23. Yoon, J. H.; Won, M. S.; Shim, Y. B. Proceedings of the 2nd Cross Straits Symposium on Materials, Energy and Environmental Sciences 2000, 2-3 Nov
  24. Oyama, M.; Okazaki, S. Anal. Chem. 1998, 70, 5079 https://doi.org/10.1021/ac980692y
  25. Shim, Y. B.; Park, S. M. J. Electranal. Chem. 1997, 425, 201 https://doi.org/10.1016/S0022-0728(96)04956-X
  26. Lian, H. Z.; Mao, L.; Ye, X. L.; Miao, J. J. Pharmaceutical and Biomedical Analysis 1999, 19, 621 https://doi.org/10.1016/S0731-7085(98)00101-0
  27. Comninellis, Ch.; Pulgarin, C. J. Appl. Electrochem. 1993, 23, 108

Cited by

  1. Anodic oxidation of benzoquinone using diamond anode vol.21, pp.14, 2014, https://doi.org/10.1007/s11356-014-2782-2
  2. Toxicological Profile of 1,4-Benzoquinone and Its Degradation By-Products during Electro-Fenton, Electrocoagulation, and Electrosynthesized Fe(VI) Oxidation vol.144, pp.12, 2018, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001467
  3. Removal of Heavy Metal Ions by Electrocoagulation for Continuous Use of Fe2+/Fe3+-Mediated Electrochemical Oxidation Solutions vol.29, pp.5, 2008, https://doi.org/10.5012/bkcs.2008.29.5.974
  4. The Optimization of Gel Electrolytes on Performance of Valve Regulated Lead Acid Batteries vol.29, pp.5, 2007, https://doi.org/10.5012/bkcs.2008.29.5.998
  5. Electrochemical Degradation of Phenol and 2-Chlorophenol Using Pt/Ti and Boron-Doped Diamond Electrodes vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2274