DOI QR코드

DOI QR Code

Al3+ Selective Chemosensor: Pyrenyl Polyether Pentant Calix[4]arene

  • Lee, Yeon-Ok (Department of Chemistry, Institute of Nanosensor & Biotechnology, Dankook University) ;
  • Choi, Yun-Hee (Department of Chemistry, Institute of Nanosensor & Biotechnology, Dankook University) ;
  • Kim, Jong-Seung (Department of Chemistry, Institute of Nanosensor & Biotechnology, Dankook University)
  • Published : 2007.01.20

Abstract

Keywords

References

  1. Desvergne, J. P., Czarnik, A. W., Eds.; NATO ASI series; Kluwer Academic: Dordrecht, The Netherlands, 1997; p 492
  2. de Silva, A. P.; Gunaratne, H. Q.; Gunnlaugsson, N. T. A.; Huxley, T. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515 https://doi.org/10.1021/cr960386p
  3. Prodi, L.; Montalti, M.; Zaccheroni, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. Tetrahedron Lett. 2001, 42, 2941 https://doi.org/10.1016/S0040-4039(01)00330-6
  4. Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J. J. Am. Chem. Soc. 2000, 122, 968
  5. Xie, X. S. Acc. Chem. Res. 1996, 29, 598 https://doi.org/10.1021/ar950246m
  6. Goodwin, P. M.; Ambrose, W. P.; Keller, R. A. Acc. Chem. Res. 1996, 29, 607 https://doi.org/10.1021/ar950250y
  7. Orrit, M.; Bernard, J. Phys. Rev. Lett. 1990, 65, 2716 https://doi.org/10.1103/PhysRevLett.65.2716
  8. Mets, U.; Rigler, R. J. Fluoresc. 1994, 4, 259 https://doi.org/10.1007/BF01878461
  9. Moerner, W. E.; Basche, T. Angew. Chem., Int. Ed. Engl. 1993, 32, 457 https://doi.org/10.1002/anie.199304573
  10. Moerner, W. E. Acc. Chem. Res. 1996, 29, 563 https://doi.org/10.1021/ar950245u
  11. Yeung, E. S. Acc. Chem. Res. 1994, 27, 209
  12. Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Interscience: London, 1970
  13. Winnik, F. M. Chem. Rev. 1993, 93, 587 https://doi.org/10.1021/cr00018a001
  14. Kim, S. K.; Bok, J. H.; Bartsch, R. A.; Lee, J. Y.; Kim, J. S. Org. Lett. 2005, 7, 4839 https://doi.org/10.1021/ol051609d
  15. Kim, J. Y.; Kim, G.; Kim, C. R.; Lee, S. H.; Lee, J. H.; Kim, J. S. J. Org. Chem. 2003, 68, 1933 https://doi.org/10.1021/jo020684o
  16. Kim, S. K.; Kim, S. H.; Kim, H. J.; Lee, S. H.; Lee, S. W.; Ko, J.; Bartsch, R. A.; Kim, J. S. Inorg. Chem. 2005, 44, 7866 https://doi.org/10.1021/ic050702v
  17. Kim, S. K.; Lee, S. H.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S. J. Am. Chem. Soc. 2004, 126, 16499 https://doi.org/10.1021/ja045689c
  18. Broan, C. J. Chem. Commun. 1996, 699
  19. Lewis, F. D.; Zhang, Y.; Letsinger, R. L. J. Am. Chem. Soc. 1997, 119, 5451 https://doi.org/10.1021/ja9641214
  20. Lou, J.; Hatton, T. A.; Laibinis, P. E. Anal. Chem. 1997, 69, 1262 https://doi.org/10.1021/ac960745g
  21. Reis e Sousa, A. T.; Castanheira, E. M. S.; Fedorov, A.; Martinho, J. M. G. J. Phys. Chem. A 1998, 102, 6406 https://doi.org/10.1021/jp973258t
  22. Suzuki, Y.; Morozumi, T.; Nakamura, H.; Shimomura, M.; Hayashita, T.; Bartsch, R. A. J. Phys. Chem. B 1998, 102, 7910 https://doi.org/10.1021/jp981567t
  23. William, R. J. P. Coord. Chem. Rev. 2002, 228, 93 https://doi.org/10.1016/S0010-8545(02)00072-3
  24. Yokel, R. A. Neurotoxicology 2000, 21, 813
  25. Aoki, I.; Sakaki, T.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1992, 730
  26. Jin, T.; Ichikawa, K.; Koyama, T. J. Chem. Soc., Chem. Commun. 1992, 499
  27. Ji, H.-F.; Brown, G. M.; Dabestani, R. Chem. Commun. 1999, 609
  28. Kim, J. S.; Shon, O. J.; Rim, J. A.; Kim, S. K.; Yoon, J. J. Org. Chem. 2002, 67, 2348 https://doi.org/10.1021/jo010877w
  29. Kim, J. S.; Noh, K. H.; Lee, S. H.; Kim, S. K.; Kim, S. K.; Yoon, J. J. Org. Chem. 2003, 68, 597 https://doi.org/10.1021/jo020538i
  30. Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989
  31. Gutsche, C. D. In Synthesis of Macrocycles: Design of Selective Complexing Agents; Izatt, R. M., Christensen, J. J., Eds.; Wiley: New York, 1987; p 93
  32. Calixarenes: A Versatile Class of Macrocyclic Compounds; Vicens, J.; Bohmer, V., Eds.; Kluwer: Dordrecht, 1991
  33. Bohmer, V.; McKervey, M. A. Chem. Zeit 1991, 195
  34. Gutsche, C. D. In Calixarenes, Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; Royal Society of Chemistry: Cambridge, U. K., 1989; Vol. 1.9
  35. Park, Y. J.; No, K. Bull. Korean Chem. Soc. 2005, 26, 337 https://doi.org/10.5012/bkcs.2005.26.2.337
  36. Kim, J. S.; Lee, W. K.; No, K. H.; Asfari, Z.; Vicens, J. Tetrahedron Lett. 2000, 41, 3345 https://doi.org/10.1016/S0040-4039(00)00382-8
  37. Lee, Y. O.; Lee, J. Y.; Quang, D. T.; Lee, M. H.; Kim, J. S. Bull. Korean Chem. Soc. 2006, 27, 1469 https://doi.org/10.5012/bkcs.2006.27.9.1469
  38. Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303 https://doi.org/10.1021/cr9603744
  39. Yang, R. H.; Chan, W. C.; Albert, W.; Lee, M.; Xia, P. F.; Zhang, H. K.; Li, K. J. Am. Chem. Soc. 2003, 125, 2884 https://doi.org/10.1021/ja029253d
  40. Hayashita, T.; Taniguchi, S.; Tanamura, Y.; Uchida, T.; Nishizawa, S.; Teramae, N.; Jin, Y. S.; Lee, J. C.; Bartsch, R. A. J. Chem. Soc., Perkin Trans. 2 2000, 1003

Cited by

  1. Naphthaldehyde-Urea/Thiourea Conjugates as Turn-On Fluorescent Probes for Al3+ Based on Restricted C=N Isomerization vol.2011, pp.36, 2011, https://doi.org/10.1002/ejic.201100772
  2. A naphthalene-based Al3+ selective fluorescent sensor for living cell imaging vol.9, pp.15, 2011, https://doi.org/10.1039/c1ob05479a
  3. Ion and Proton vol.14, pp.13, 2012, https://doi.org/10.1021/ol301390g
  4. Fluorescent probes for selective determination of trace level Al3+: recent developments and future prospects vol.5, pp.22, 2013, https://doi.org/10.1039/c3ay40982a
  5. ICT-based Alkynylpyrene vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2107
  6. Coumarin Appended Calix[4]arene as a Selective Fluorometric Sensor for Cu2+ Ion in Aqueous Solution vol.28, pp.4, 2007, https://doi.org/10.5012/bkcs.2007.28.4.682
  7. Tetradiazo(o-carboxy)phenylcalix[4]arene for Determination of Pb2+ Ion vol.28, pp.5, 2007, https://doi.org/10.5012/bkcs.2007.28.5.791
  8. Highly Selective Fluorescent Signaling for Al3+ in Bispyrenyl Polyether vol.28, pp.5, 2007, https://doi.org/10.5012/bkcs.2007.28.5.811
  9. Azetidine-based Anthracenyl Chemosensor for Cu(II) Ion in Aqueous Media vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.2033
  10. Sr2+ Ion Selective p-tert-Butylthiacalix[4]arene Bearing Two Distal Amide Units vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.620
  11. BODIPY Appended Crown Ethers: Selective Fluorescence Changes for Hg2+ Binding vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1831
  12. Fluorescent Sensing of Tetrahedral Anions with a Pyrene Urea Derivative of Calix[4]arene Chemosensor vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1675
  13. Iminocoumarin-based Hg(II) Ion Probe vol.31, pp.1, 2010, https://doi.org/10.5012/bkcs.2010.31.01.230
  14. Pyrimidine based highly sensitive fluorescent receptor for Al3+ showing dual signalling mechanism vol.8, pp.21, 2007, https://doi.org/10.1039/c0ob00171f
  15. Selective fluorescence sensor for Al3+ and Pb2+ in physiological condition by a benzene based tripodal receptor vol.54, pp.8, 2007, https://doi.org/10.1016/j.tetlet.2012.11.114
  16. Theoretical Design of Near-Infrared Al3+ Fluorescent Probes Based on Salicylaldehyde Acylhydrazone Schiff Base Derivatives vol.58, pp.19, 2007, https://doi.org/10.1021/acs.inorgchem.9b01335