DOI QR코드

DOI QR Code

Synthesis, Photophysical and Electrochemical Properties of Novel Conjugated Donor-Acceptor Molecules Based on Phenothiazine and Benzimidazole

  • Zhang, Xiao-Hang (College of Environment and Applied Chemistry, Materials Research Center for Information Display, Kyung Hee University) ;
  • Kim, Seon-Ho (College of Environment and Applied Chemistry, Materials Research Center for Information Display, Kyung Hee University) ;
  • Lee, In-Su (College of Environment and Applied Chemistry, Materials Research Center for Information Display, Kyung Hee University) ;
  • Gao, Chun-Ji (College of Environment and Applied Chemistry, Materials Research Center for Information Display, Kyung Hee University) ;
  • Yang, Sung-Ik (College of Environment and Applied Chemistry, Materials Research Center for Information Display, Kyung Hee University) ;
  • Ahn, Kwang-Hyun (College of Environment and Applied Chemistry, Materials Research Center for Information Display, Kyung Hee University)
  • Published : 2007.08.20

Abstract

Two series of new organic fluorophores such as asymmetrical 3-(benzimidazol-2-yl)-10-hexylphenothiazine derivatives 1 and symmetrical 3,7-bis(benzimidazol-2-yl)-10-hexylphenothiazine derivatives 2 have been synthesized. Electronic absorption, fluorescence, and electrochemistry measurements reveal that the electron withdrawing benzimidazole subunit directly connected to the phenothiazine core facilitates the charge transfer characters which were also verified by the theoretical calculations. Various substituents on the benzimidazole moieties can allow a fine-tuning of the LUMO energy levels of the molecules without significantly affecting the HOMO energy levels. The method provides a new route for designing ambipolar molecules whose energy levels are well-matched with the Fermi levels of the electrodes to facilitate the electron or hole injection/transfer in OLED devices.

Keywords

References

  1. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610-3616 https://doi.org/10.1063/1.343409
  2. Chen, C. H.; Shi, J.; Tang, C. W.; Klubek, K. P. Thin Solid Film 2000, 363, 327-331 https://doi.org/10.1016/S0040-6090(99)01010-X
  3. Tao, X. T.; Miyata, S.; Sasabe, H.; Zhang, G. J.; Wada, T.; Jiang, M. H. Appl. Phys. Lett. 2001, 78, 279-281 https://doi.org/10.1063/1.1341226
  4. Thomas, K. R. J.; Lin, J. T.; Tao, Y.-T.; Chuen, C.-H. Chem. Mater. 2002, 14, 2796-2802 https://doi.org/10.1021/cm0201100
  5. Thomas, K. R. J.; Lin, J. T.; Tao, Y.-T.; Chuen, C.-H. Adv. Mater. 2002, 14, 822-826 https://doi.org/10.1002/1521-4095(20020605)14:11<822::AID-ADMA822>3.0.CO;2-S
  6. Chen, C.-T.; Lin, J.-S.; Moturu, M. V. R. K.; Lin, Y.-W.; Yi, W.; Tao, Y.-T.; Chien, C.-H. Chem. Commun. 2005, 3980-3982
  7. Chen, S.; Xu, X.; Liu, Y.; Yu, G.; Sun, X.; Qiu, W; Ma, Y.; Zhu, D. Adv. Funct. Mater. 2005, 15, 1541-1546 https://doi.org/10.1002/adfm.200500105
  8. Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N. Chem. Mater. 1998, 10, 1863-1874 https://doi.org/10.1021/cm980036e
  9. Abbotto, A.; Beverina, L.; Bozio, R.; Facchetti, A.; Ferrante, C.; Pagani, G. A.; Pedron, D.; Signorini, R. Chem. Commun. 2003, 2144-2145
  10. Lai, R. Y.; Fabrizio, E. F.; Lu, L.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2001, 123, 9112-9118 https://doi.org/10.1021/ja0102235
  11. Cho, M. J.; Kim, J. Y.; Kim, J. H.; Lee, S. H.; Dalton, L. R.; Choi, D. H. Bull. Korean Chem. Soc. 2005, 26, 77-84 https://doi.org/10.5012/bkcs.2005.26.1.077
  12. Wong, M. S.; Li, Z. H.; Tao, Y.; D'orio, M. Chem. Mater. 2003, 15, 1198-1203 https://doi.org/10.1021/cm0208915
  13. Jiao, G. S.; Thoreson, L. H.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 14668-14669 https://doi.org/10.1021/ja037193l
  14. Kannan, R.; He, G. S.; Yuan, L.; Xu, F.; Prasad, P.; Dombroskie, A. G. Chem. Mater. 2001, 13, 1896-1904 https://doi.org/10.1021/cm000747o
  15. Chiang, C.-L.; Shu, C.-F.; Chen, C.-T. Org. Lett. 2005, 7, 3717-3720 https://doi.org/10.1021/ol0513591
  16. Thomas, K. R. J.; Lin, J. T.; Velusamy, M.; Tao, Y.-T.; Chuen, C.-H. Adv. Funct. Mater. 2004, 14, 83-90 https://doi.org/10.1002/adfm.200304486
  17. Li, Z. H.; Wong, M. S.; Fukutami, H.; Tao, Y. Chem. Mater. 2005, 17, 5032-5040 https://doi.org/10.1021/cm051163v
  18. Yasuda, T.; Imase, T.; Yamamoto, T. Macromolecules 2005, 38, 7378-7385 https://doi.org/10.1021/ma051102i
  19. Ko, C.-W.; Tao, Y. T.; Danel, A.; Krzeminska, L.; Tomasik, P. Chem. Mater. 2001, 13, 2441-2446 https://doi.org/10.1021/cm010199u
  20. Krebs, F. C.; Spanggaard, H. J. Org. Chem. 2002, 67, 7185-7192 https://doi.org/10.1021/jo025592d
  21. Liang, F.; Zhou, Q.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. Chem. Mater. 2003, 15, 1935-1937 https://doi.org/10.1021/cm0257724
  22. Huang, W.-S.; Lin, J.; Chien, C.-H.; Tao, Y.-T.; Sun, S.-S.; Wen, Y.-S. Chem. Mater. 2004, 16, 2480-2488 https://doi.org/10.1021/cm0498943
  23. Wang, R.-Y.; Jia, W.-L.; Aziz, H.; Vamvounis, G.; Wang, S.; Hu, N.-X.; Popovic, Z. D.; Coggan, J. A. Adv. Funct. Mater. 2005, 15, 1483-1487 https://doi.org/10.1002/adfm.200500041
  24. Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556-4573 and references therein https://doi.org/10.1021/cm049473l
  25. Spreitzer, H.; Daub, J. Chem. Eur. J. 1996, 2, 1150-1158 https://doi.org/10.1002/chem.19960020918
  26. Kramer, C. S.; Muller, T. J. J. Eur. J. Org. Chem. 2003, 3534-3548
  27. Sailer, M.; Nonnenmacher, M.; Oeser, T.; Muller, T. J. J. Eur. J. Org. Chem. 2006, 423-435
  28. Lai, R. Y.; Kong, X.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2003, 125, 12631-12639 https://doi.org/10.1021/ja036600q
  29. Jenekhe, S. A.; Lu, L.; Alam, M. M. Macromolecules 2001, 36, 7315-7324
  30. Kong, X.; Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2003, 36, 8992-8999 https://doi.org/10.1021/ma035087y
  31. Hwang, D.; Kim, S.; Park, M.; Lee, J.; Koo, B.; Kang, I.; Kim, S.; Zyung, T. Chem. Mater. 2004, 16, 1298-1303 https://doi.org/10.1021/cm035264+
  32. Sun, X.; Liu, Y.; Xu, X.; Yang, C.; Yu, G.; Chem, S.; Zhao, Z.; Qiu, W.; Li, Y.; Zhu, D. J. Phys. Chem. B 2005, 109, 10786-10792 https://doi.org/10.1021/jp0509515
  33. Weiss, E. A.; Tauber, M. J.; Kelley, R. F.; Ahrens, M. J.; Ratner, M. A.;Wasielewski, M. R. J. Am. Chem. Soc. 2005, 127, 11842-11850 https://doi.org/10.1021/ja052901j
  34. Zhang, X.-H.; Choi, S.-H.; Choi, D. H.; Ahn, K.-H. Tetrahedron Lett. 2005, 46, 5273-5376. https://doi.org/10.1016/j.tetlet.2005.06.051
  35. Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578-5587 https://doi.org/10.1021/jo049658b
  36. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004
  37. Li, X. C.; Liu, Y. Q.; Liu, M. S.; Jen, A. K. Y. Chem. Mater. 1999, 11, 1568-1575 https://doi.org/10.1021/cm990018c
  38. Otwinowsky, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods in Enzymology Carter, C. W., Sweet, R. M., Eds.; Academic Press: New York, 1996; Vol. 276, pp 307-326
  39. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures University of Gottingen: Gottingen, Germany, 1997

Cited by

  1. Synthesis, photophysical, and electrochemical properties of wide band gap tetraphenylsilane-carbazole derivatives: Effect of the substitution position and naphthalene side chain vol.90, pp.13, 2016, https://doi.org/10.1134/S0036024416130124
  2. Benzimidazole as a structural unit in fluorescent chemical sensors: the hidden properties of a multifunctional heterocyclic scaffold pp.1029-0478, 2018, https://doi.org/10.1080/10610278.2017.1403607
  3. Synthesis and photophysical and electrochemical properties of three novel Ru(II) complexes vol.17, pp.2, 2013, https://doi.org/10.1179/1433075X12Y.0000000014
  4. A New Blue Light-Emitting Material with Phenylbenzimidazole Moiety and Its Electroluminescence Properties vol.513, pp.1, 2009, https://doi.org/10.1080/15421400903217157
  5. The synthesis and characterization of 2-(2'-pyridyl)benzimidazole heteroleptic ruthenium complex: Efficient sensitizer for molecular photovoltaics vol.84, pp.1, 2007, https://doi.org/10.1016/j.dyepig.2009.06.016
  6. Quantum Chemical Study of the OLED Materials Tris[4'-(1"-phenylbenzimidazol-2"-yl)phenyl] Derivatives of Amine and Benzene vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1733
  7. Imidazole as a parent π-conjugated backbone in charge-transfer chromophores vol.8, pp.None, 2007, https://doi.org/10.3762/bjoc.8.4
  8. Synthesis, Photophysical and Electrochemical Properties of Novel Ru(II) Complexes vol.56, pp.3, 2007, https://doi.org/10.5012/jkcs.2012.56.3.313
  9. Electroluminescence Characteristics of a New Green-Emitting Phenylphenothiazine Derivative with Phenylbenzimidazole Substituent vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.107
  10. Benzimidazole-Branched Isomeric Dyes: Effect of Molecular Constitution on Photophysical, Electrochemical, and Photovoltaic Properties vol.81, pp.2, 2007, https://doi.org/10.1021/acs.joc.5b02590
  11. Synthesis, spectral, structural prediction and computational studies of octylcarbazole ornamented 3-phenothiazinal vol.1147, pp.None, 2007, https://doi.org/10.1016/j.molstruc.2017.06.136
  12. Construction of Highly Efficient Carbazol-9-yl-Substituted Benzimidazole Bipolar Hosts for Blue Phosphorescent Light-Emitting Diodes: Isomer and Device Performance Relationships vol.10, pp.49, 2007, https://doi.org/10.1021/acsami.8b15084
  13. The Synthesis of Polyethersulfone (PES) and its Derivatives as Polymer Light Emitting Diode (PLED) Material vol.811, pp.None, 2019, https://doi.org/10.4028/www.scientific.net/kem.811.126
  14. Excitation-Wavelength-Dependent Light-Induced Electron Transfer and Twisted Intramolecular Charge Transfer in N,N-Bis(4′-tert-butylbiphenyl-4-yl)aniline Functionalized Borondipyrromethenes vol.124, pp.47, 2007, https://doi.org/10.1021/acs.jpca.0c04789