DOI QR코드

DOI QR Code

Electrochemical Determination of Ciprofloxacin Based on the Enhancement Effect of Sodium Dodecyl Benzene Sulfonate

  • Zhang, Shenghui (Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Institute for Nationalities) ;
  • Wei, Shuang (Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Institute for Nationalities)
  • Published : 2007.04.20

Abstract

Herein, a new electrochemical method was described for the determination of ciprofloxacin based on the enhancement effect of an anionic surfactant: sodium dodecyl benzene sulfonate (SDBS). In pH 4.0 phosphate buffer and in the presence of 1.0 × 10-4 mol/L SDBS, ciprofloxacin yields a well-defined and sensitive oxidation peak at the carbon paste electrode (CPE). Compared with that in the absence of SDBS, the oxidation peak current of ciprofloxacin remarkably increases in the presence of SDBS. The experimental parameters, such as supporting electrolyte, concentration of SDBS, and accumulation time, were optimized for ciprofloxacin determination. The oxidation peak current is proportional to the concentration of ciprofloxacin over the range from 8.0 × 10-8 to 5.0 × 10-6 mol L-1. The detection limit is 2.0 × 10-8 mol L-1 after 2 min of accumulation. This new voltammetric method was successfully used to detect ciprofloxacin in drugs.

Keywords

References

  1. Neckel, U.; Joukhadar, C.; Frossard, M.; Jager, W.; Muller, M.; Mayer, B. X. Anal. Chim. Acta 2003, 463, 199 https://doi.org/10.1016/S0003-2670(02)00429-4
  2. Idowu, O. R.; Peggins, J. O. J. Pharmaceut. Biomed. Anal. 2004, 35, 143 https://doi.org/10.1016/j.jpba.2004.01.006
  3. Vybiralova, Z.; Nobilis, M.; Zoulova, J.; Kvetina, J.; Petr, P. J. Pharmaceut. Biomed. Anal. 2005, 37, 851 https://doi.org/10.1016/j.jpba.2004.09.034
  4. Espinosa-Mansilla, A.; de la Pena, A. M.; Gomez, D. G.; Canada- Canada, F. J. Separation Sci. 2006, 29, 1969 https://doi.org/10.1002/jssc.200600126
  5. Gonzalez, C.; Moreno, L.; Small, J.; Jones, D. G.; Bruni, S. F. S. Anal. Chim. Acta 2006, 560, 227 https://doi.org/10.1016/j.aca.2005.12.040
  6. Nagaralli, B. S.; Seetharamappa, J.; Melwanki, M. B. J. Pharmaceut. Biomed. Anal. 2002, 29, 859 https://doi.org/10.1016/S0731-7085(02)00210-8
  7. Pascual-Reguera, M. I.; Parras, G. P.; Diaz, A. M. Microchem. J. 2004, 77, 79 https://doi.org/10.1016/j.microc.2004.01.003
  8. Michalska, K.; Pajchel, G.; Tyski, S. J. Chromatogr. A 2004, 1051, 267 https://doi.org/10.1016/j.chroma.2004.04.048
  9. Vilchez, J. L.; Araujo, L.; Prieto, A.; Navalon, A. Anal. Chim. Acta 2004, 516, 135 https://doi.org/10.1016/j.aca.2004.04.025
  10. Zhang, Z. Y.; Li, X.; Wang, X. L.; Chen, S. L.; Song, B. H.; Zhao, H. C. J. Rare Earths 2006, 24, 285 https://doi.org/10.1016/S1002-0721(06)60110-5
  11. Sun, H. W.; Li, L. Q.; Chen, X. Y. Anal. Bioanal. Chem. 2006, 384, 1314 https://doi.org/10.1007/s00216-005-0277-1
  12. Torriero, A. A. J.; Ruiz-Diaz, J. J. J.; Salinas, E.; Marchevsky, E. J.; Sanz, M. I.; Raba, J. Talanta 2006, 69, 691 https://doi.org/10.1016/j.talanta.2005.11.005
  13. Connors, T. F.; Rusling, J. F.; Owlia, A. Anal. Chem. 1985, 57, 170 https://doi.org/10.1021/ac00279a042
  14. Rusling, J. F.; Alaa-Eldin, F. N. J. Am. Chem. Soc. 1993, 15, 11891
  15. Plavsiae, M.; Krnaric, D.; Osoviae, B. Electroanalysis 1994, 6, 469 https://doi.org/10.1002/elan.1140060518
  16. Yang, J.; Hu, N. F.; Rusling, J. F. J. Electroanal. Chem. 1999, 463, 53 https://doi.org/10.1016/S0022-0728(98)00432-X
  17. Zhang, S. H.; Wu, K. B. Bull. Korean Chem. Soc. 2004, 25, 1321 https://doi.org/10.5012/bkcs.2004.25.9.1321
  18. Bard, A. J.; Faulker, L. R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons. Inc.: New York, Chichester, Weinhein, 2001

Cited by

  1. Electrochemical reduction of ciprofloxacin at the mercury electrode and its voltammetric determination in tablet and urine vol.50, pp.4, 2014, https://doi.org/10.1134/S1023193514040028
  2. Synthesis and characterization of Ba0.5Co0.5Fe2O4 nanoparticle ferrites: application as electrochemical sensor for ciprofloxacin vol.26, pp.7, 2015, https://doi.org/10.1007/s10854-015-3036-x
  3. Simultaneous determination of ciprofloxacin and paracetamol by adsorptive stripping voltammetry using copper zinc ferrite nanoparticles modified carbon paste electrode vol.6, pp.18, 2016, https://doi.org/10.1039/C5RA19861E
  4. /Graphene Oxide in Surfactant Stabilized Media vol.164, pp.13, 2017, https://doi.org/10.1149/2.1221713jes
  5. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent: an experimental and theoretical investigation vol.41, pp.12, 2017, https://doi.org/10.1039/C7NJ00609H
  6. Voltammetric Ciprofloxacin Sensor Based on Carbon Paste Electrodes Modified with Mesoporous Carbon with Enhancement Effect Using CTAB vol.162, pp.8, 2015, https://doi.org/10.1149/2.0641508jes
  7. Gold nanoparticles and reduced graphene oxide-amplified label-free DNA biosensor for dasatinib detection vol.42, pp.19, 2018, https://doi.org/10.1039/C8NJ03783C
  8. Electrochemical Behavior of Norfloxacin and Its Determination at Poly(methyl red) Film Coated Glassy Carbon Electrode vol.29, pp.5, 2007, https://doi.org/10.5012/bkcs.2008.29.5.988
  9. Recent Advances in Electroanalysis of Organic Compounds at Carbon Paste Electrodes vol.39, pp.3, 2007, https://doi.org/10.1080/10408340903011853
  10. 네모파 흡착 벗김 전압전류법에 의한 플루오로퀴놀론 계 항생제의 검출 vol.13, pp.1, 2010, https://doi.org/10.5229/jkes.2010.13.1.063
  11. Robotic voltammetry with carbon nanotube-based sensors: a superb blend for convenient high-quality antimicrobial trace analysis vol.10, pp.None, 2007, https://doi.org/10.2147/ijn.s75237
  12. The Electrochemical Resolution of Ciprofloxacin, Riboflavin and Estriol Using Anionic Surfactant and Polymer‐Modified Carbon Paste Electrode vol.4, pp.46, 2007, https://doi.org/10.1002/slct.201903897