DOI QR코드

DOI QR Code

Development of Isotope Dilution-Liquid Chromatography/Tandem Mass Spectrometry as a Candidate Reference Method for the Determination of Folic Acid in Infant Milk Formula

  • Jung, Min-Young (Department of Chemistry, Yonsei University) ;
  • Kim, Byung-Joo (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science) ;
  • Boo, Doo-Wan (Department of Chemistry, Yonsei University) ;
  • So, Hun-Young (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science)
  • 발행 : 2007.05.20

초록

An isotope dilution-liquid chromatography/tandem mass spectrometric method was developed as a candidate reference method for the accurate determination of folic acid in infant milk formula. Sample was spiked with 13C5-folic acid and then extracted with phosphate buffer (pH 6) solution. The extract was further cleaned up by deproteinization followed by a C18 solid-phase extraction cartridge. The extract was analyzed by using LC/ ESI/MS/MS with selectively monitoring the collisionally induced dissociation channels of m/z 442 → m/z 295 and m/z 447 → m/z 295, which are the neutral glutamyl loss from the [M+H]+ ions of folic acid and 13C5-folic acid, respectively. LC/MS/MS chromatograms showed substantially reduced background from chemical noises compared to LC/MS chromatograms. Repeatability and reproducibility studies showed that the LC/MS/ MS method is a reliable and reproducible method which can provide less than 1.5 relative percentage of method precision.

키워드

참고문헌

  1. Kornings, E. J. M. Dietary Folates in Human Nutrients; Datawyse Universitaire Pers: Maastricht, The Netherlands, 2001; p 12
  2. Sichert-Hellert, W.; Kersting, M. Nutritional Epidemiology 2004, 2685
  3. (PART 3) Federal Register. 5th March: 21 CFR parts 101, 136, 137, 138, 172, 2004, 8750
  4. Tanner, J. T.; Barnett, S. A.; Mountford, M. K. J. AOAC International 1993, 76, 399
  5. Ball, G. F. M. Water-Soluble Vitamin Assays in Human Nutrion; Chapman & Hall: 1994; p 317
  6. Eitemiller, R. R.; Landen, W. O. Vitamin Analysis for the Health and Food Sciences; CRC Press: 1999; p 411
  7. Gregory, J. F. Adv. Food Nutr. Res. 1989, 33, 21
  8. Finglas, P. M.; Faur, U.; Southgate, D. A. T. Food Chem. 1993, 46, 199 https://doi.org/10.1016/0308-8146(93)90037-G
  9. Seyoum, E.; Selhub, J. J. Nutr. Biochem. 1993, 4, 448
  10. Pfeiffer, C. M.; Rogers, L. M.; Gregory, J. F. J. Agric. Food Chem. 1997, 45, 407 https://doi.org/10.1021/jf960633q
  11. Ruggeri, S.; Vahteristo, L. T.; Aguzzi, A.; Finglas, P.; Carnovale, E. J. Chromatogr. A 1999, 855, 237 https://doi.org/10.1016/S0021-9673(99)00674-3
  12. Finglas, P. M.; Wigertz, K.; Vahteristo, L.; Witthoft, C.; Vahteristo, L.; Witthoft, C.; Southon, S.; de Froidmont-Gortz, I. Food Chem. 1999, 64, 245
  13. Konings, E. J. M. J. AOAC. International 1999, 82, 119
  14. Bagley, P. J.; Selhub, J. Clin. Chem. 2000, 46, 404
  15. Konings, E. J. M.; Roomans, H. H. S.; Dorant, E.; Goldbohm, R. A.; Saris, W. H. M.; Van den Brandt, P. A. Am. J. Clin. Nutr. 2001, 73, 765
  16. Cheruppolil, R. S. K.; Kolhouse, J. F. Methods. Enzymol. 1997, 261, 26
  17. Vahteristo, L.; Finglas, P. M. Chromatographic Science 2000, 84, 301
  18. Lin, Y.; Deuker, S. R.; Clifford, A. J. Anal. Biochem. 2003, 312, 255 https://doi.org/10.1016/S0003-2697(02)00502-X
  19. Stokes, P.; Webb, K. J. Chromatogr. 1999, 864, 59 https://doi.org/10.1016/S0021-9673(99)00992-9
  20. Puwastien, P.; Pinprapai, N.; Judprasong, K.; Tamura, T. J. Food Comp. Anal. 2005, 18, 387 https://doi.org/10.1016/j.jfca.2004.02.011
  21. Pawlosky, R.; Flanagan, V. P. J. Agric. Food Chem. 2001, 49, 1282 https://doi.org/10.1021/jf001172i
  22. Pawlosky, R. J.; Flanagan, V. P.; Doherty, R. F. J. Agric. Food Chem. 2007, 51, 3726 https://doi.org/10.1021/jf034017n
  23. Freisleben, A.; Schieberle, P.; Rychlik, M. Anal. Biochem. 2003, 315, 247 https://doi.org/10.1016/S0003-2697(03)00029-0
  24. Rychlik, M.; Freisleben, A. J. Food Comp. Anal. 2002, 15, 399 https://doi.org/10.1006/jfca.2002.1081
  25. Thomas, P. M.; Flanagan, V. P.; Pawlosky, R. J. J. Agric. Food Chem. 2003, 51, 1293 https://doi.org/10.1021/jf020902e
  26. Nelson, B. C.; Pfeiffer, C. M.; Margolis, S. A.; Nelson, C. P. Anal. Biochem. 2003, 313, 117 https://doi.org/10.1016/S0003-2697(02)00531-6
  27. Frieslben, A.; Schieberle, P.; Rychilik, M. Anal. Bioanal. Chem. 2003, 376, 149
  28. Rychlik, M.; Netzel, M.; Pfannebecker, I.; Frank, T.; Bitsch, I. J. Chromatogr. B 2003, 792, 167 https://doi.org/10.1016/S1570-0232(03)00254-X
  29. Rychlik, M. Anal. Chem. Acta 2003, 495, 133 https://doi.org/10.1016/j.aca.2003.08.020
  30. Matuszewski, B. K.; Constanzer, M. L.; Chavez-Eng, C. M. Anal. Chem. 2003, 75, 3019 https://doi.org/10.1021/ac020361s
  31. Zhang, G. F.; Storozhenko, S.; Van Der Straeten, D.; Lambert, W. E. J. Chromatogr. A 2005, 1078, 59 https://doi.org/10.1016/j.chroma.2005.04.085
  32. Doherty, R. F.; Beecher, G. R. J. Agric. Food Chem. 2003, 51, 354 https://doi.org/10.1021/jf0259056
  33. Ginting, E.; Arcot, J. J. Agric. Food Chem. 2004, 52, 752
  34. Arcot, J.; Shrestha, A. Trends in Food Science Technol. 2005, 16, 253 https://doi.org/10.1016/j.tifs.2005.03.013
  35. Choi, J.; Hwang, E.; So, H.-Y.; Kim, B. Accredit. Qua Ass. 2003, 8, 13 https://doi.org/10.1007/s00769-002-0520-9
  36. Jung, P. G.; Kim, B.; Park, S.-R.; So, H.-Y.; Shi, L. H.; Kim, Y. Anal. Bioanal. Chem. 2004, 380, 782 https://doi.org/10.1007/s00216-004-2846-0

피인용 문헌

  1. An electrochemical sensor based on carbon nanotubes and a new Schiff base for selective determination of dopamine in the presence of uric acid, folic acid, and acetaminophen vol.19, pp.11, 2013, https://doi.org/10.1007/s11581-013-0879-0
  2. Electrochemical determination of epinephrine, uric acid and folic acid using a carbon paste electrode modified with novel ferrocene derivative and core–shell magnetic nanoparticles pp.1568-5675, 2019, https://doi.org/10.1007/s11164-018-3668-6
  3. Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core-shell magnetic nanoparticles in aqueous media pp.02682605, 2018, https://doi.org/10.1002/aoc.4551
  4. Current literature in mass spectrometry vol.43, pp.2, 2008, https://doi.org/10.1002/jms.1299
  5. Analysis of Benzoic Acid in Quasi-Drug Drink Using Isotope Dilution Liquid Chromatography Mass Spectrometry vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2125
  6. Influence of Fragmentor Voltage and Solvent on Negative Ionization Behaviors of Uvinul 3039 Using LC/APCI-MS vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1847
  7. Development of an Isotope-Dilution Flow-Injection Electrospray/ Mass Spectrometric Method for the Accurate Determination of Glucosamine in Pharmaceutical Formulation vol.30, pp.2, 2009, https://doi.org/10.5012/bkcs.2009.30.2.363
  8. Development of a Model System of Uncertainty Evaluations for Multiple Measurements by Isotope Dilution Mass Spectrometry: Determination of Folic Acid in Infant Formula vol.31, pp.11, 2010, https://doi.org/10.5012/bkcs.2010.31.11.3139