DOI QR코드

DOI QR Code

The Structural and Electrochemical Properties of Thermally Aged Li[Co0.1Ni0.15Li0.2Mn0.55]O2 Cathodes

  • Park, Yong-Joon (Division of Advanced Industrial Engineering, Kyonggi University) ;
  • Lee, Ju-Wook (Semiconductor Process Team, Electronics and Telecommunications Research Institute) ;
  • Lee, Young-Gi (Ionics Device Team, Electronics and Telecommunications Research Institute) ;
  • Kim, Kwang-Man (Ionics Device Team, Electronics and Telecommunications Research Institute) ;
  • Kang, Man-Gu (Ionics Device Team, Electronics and Telecommunications Research Institute) ;
  • Lee, Young-Il (Department of Chemistry, University of Ulsan)
  • Published : 2007.12.20

Abstract

As a cathode material of lithium rechargeable batteries, charged Li[Co0.1Ni0.15Li0.2Mn0.55]O2 electrodes, which were aged thermally at 25 oC and 90 oC respectively, were characterized by means of charge/discharger, impedance spectroscopy, and X-ray diffraction. The discharge capacity diminution of the electrodes aged at 25 oC and 90 oC for 1 week was 4% and 23%, respectively. The cell aged at 25 oC was recovered on cycling. However, the capacity loss after ageing at 90 oC was not recovered in a subsequent cycling test, which demonstrates that the reaction occurring during ageing at 90 oC is irreversible. A significant impedance increase of aged electrode at 90 oC is associated with irreversible capacity loss. The structural changes including phase transformation were not detected by XRD analysis, because it could be due to out of detection limit. After ageing, impedance was slightly decreased during subsequent cycling test. It could be explained the cyclic performance of aged sample is stable. The thermal stability was not deteriorated by ageing even at the high temperature of 90 oC.

Keywords

References

  1. Hong, Y.-S.; Park, Y. J.; Ryu, K. S.; Chang, S. H.; Shin, Y.-J. J. Power Sources 2005, 147, 214 https://doi.org/10.1016/j.jpowsour.2004.11.018
  2. Ohzuku, T.; Makimura, Y. Chem. Lett. 2001, 744
  3. Numata, K.; Sakaki, C.; Yamanaka, S. Solid State Ionics 1999, 117, 257 https://doi.org/10.1016/S0167-2738(98)00417-2
  4. Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1454 https://doi.org/10.1149/1.1513557
  5. Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A815 https://doi.org/10.1149/1.1480014
  6. Robertson, A. D.; Bruce, P. G. Chem. Commun. 2002, 2790
  7. Robertson, A. D.; Bruce, P. G. Chem. Mater. 2003, 15, 1984 https://doi.org/10.1021/cm030047u
  8. Armstrong, A. R.; Bruce, P. G. Electrochem. Solid-State Lett. 2004, 7(1), A1 https://doi.org/10.1149/1.1625591
  9. Yoon, W.-S.; Iannopollo, S.; Grey, C. P.; Carlier, D.; Dorman, J.; Reed, J.; Ceder, G. Electrochem. Solid-State Lett. 2004, 7(7), A167 https://doi.org/10.1149/1.1737711
  10. Johnson, C. S.; Kim, J.-S.; Kropf, A. J.; Kahaian, A. J.; Vaughey, J. T.; Thackeray, M. M. J. Power Sources 2003, 119-121, 139
  11. Park, Y. J.; Kim, M. G.; Hong, Y.-S.; Wu, X.; Ryu, K. S.; Chang, S. H. Solid State Commun. 2003, 127, 509 https://doi.org/10.1016/S0038-1098(03)00432-0
  12. Park, Y. J.; Hong, Y.-S.; Wu, X.; Kim, M. G.; Ryu, K. S.; Chang, S. H. J. Electrochem. Soc. 2002, 151, A720
  13. Park, Y. J.; Hong, Y.-S.; Wu, X.; Ryu, K. S.; Chang, S. H. J. Power Sources 2004, 129, 288 https://doi.org/10.1016/j.jpowsour.2003.11.024
  14. Hong, Y.-S.; Park, Y. J.; Ryu, K. S.; Chang, S. H.; Kim, M. G. J. Mater. Chem. 2004, 14, 1424 https://doi.org/10.1039/b311888f
  15. Hong, Y.-S.; Park, Y. J.; Ryu, K. S.; Chang, S. H. Solid State Ionics 2005, 176, 1035 https://doi.org/10.1016/j.ssi.2005.02.006
  16. Wu, X.; Ryu, K. S.; Hong, Y.-S.; Park, Y. J.; Chang, S. H. J. Power Sources 2004, 132, 219 https://doi.org/10.1016/j.jpowsour.2003.12.030
  17. Gabrisch, H.; Ozawa, Y.; Yazami, R. Electrochimica Acta 2006, 52, 1499 https://doi.org/10.1016/j.electacta.2006.02.050
  18. Aurbach, D.; Markovsky, B.; Talyossef, Y.; Salitra, G.; Kim, H.-J.; Choi, S. J. Power Sources 2006, 162, 780 https://doi.org/10.1016/j.jpowsour.2005.07.009
  19. Abraham, D.; Reynolds, E.; Sammann, E; Jansen, A.; Dees, D. Electrochimica Acta 2005, 51, 502 https://doi.org/10.1016/j.electacta.2005.05.008
  20. Troltzsch, U.; Kanoun, O.; Trankler, H. Electrochimica Acta 2006, 51, 1664 https://doi.org/10.1016/j.electacta.2005.02.148
  21. Zhou, W.; Bao, S.; He, B.; Liang, Y.; Li, H. Electrochimica Acta 2006, 51, 4701 https://doi.org/10.1016/j.electacta.2006.01.011
  22. Mohamedi, M.; Takahashi, D.; Itoh, T.; Umeda, M.; Uchida, I. J. Electrochem. Soc. 2002, 149, A19 https://doi.org/10.1149/1.1424285
  23. Orsini, F.; Dolle, M.; Tarascon, J.-M. Solid State Ionics 2000, 135, 213
  24. Lu, C.-H.; Wang, H.-C. J. Eur. Ceram. Soc. 2004, 24, 717 https://doi.org/10.1016/S0955-2219(03)00332-7
  25. Fey, G. T.; Lu, C.-Z.; Kumar, T. P. J. Power Sources 2003, 115, 332 https://doi.org/10.1016/S0378-7753(03)00010-7
  26. Vetter, J.; Novak, P.; Wagner, M. R.; Veit, C.; Moller, K.-C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. J. Power Sources 2005, 147, 269 https://doi.org/10.1016/j.jpowsour.2005.01.006
  27. Song, J. Y.; Lee, H. H.; Wang, Y. Y.; Wan, C. C. J. Power Sources 2002, 111, 255 https://doi.org/10.1016/S0378-7753(02)00310-5
  28. Spotnitz, R. J. Power Sources 2003, 113, 72 https://doi.org/10.1016/S0378-7753(02)00490-1
  29. Arora, P.; White, R. E.; Doyle, M. J. Electrochem. Soc. 1998, 145, 3647 https://doi.org/10.1149/1.1838857
  30. Broussely, M.; Herreyre, S.; Biensan, P.; Kasztejna, P.; Nechev, K.; Staniewiez, R. J. J. Power Sources 2001, 97-98, 13 https://doi.org/10.1016/S0378-7753(01)00596-1
  31. Markovsky, B.; Rodkin, A.; Cohen, Y. S.; Palchik, O.; Levi, E.; Aurbach, D.; Kim, H. J.; Schimidt, M. J. Power Sources 2003, 119, 504 https://doi.org/10.1016/S0378-7753(03)00274-X
  32. Broussely, M.; Biensan, Ph.; Bonhomme, F.; Blanchard, Ph.; Herreyre, S.; Nechev, K.; Staniewiez, R. J. J. Power Sources 2005, 146, 90 https://doi.org/10.1016/j.jpowsour.2005.03.172

Cited by

  1. Simple Preparation of V2O5 Nanostructures and Their Characterization vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.2061
  2. The Effect of Surface Modification with La-M-O (M = Ni, Li) on Electrochemical Performances of Li[Ni0.8Co0.15Al0.05]O2 Cathode vol.30, pp.3, 2007, https://doi.org/10.5012/bkcs.2009.30.3.657
  3. Dispersion of Li[Ni0.2Li0.2Mn0.6]O2 Powder by Surfactant for High-power Li-ion Cell vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1598
  4. The Effects of LaF3 Coating on the Electrochemical Property of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material vol.30, pp.11, 2009, https://doi.org/10.5012/bkcs.2009.30.11.2584
  5. Effect of Calcination Temperature on the Structure and Electrochemical Performance of LiMn1.5Ni0.5O4 Cathode Materials vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.59
  6. Bulk and surface analyses of ageing of a 5V-NCM positive electrode material for lithium-ion batteries vol.2, pp.18, 2007, https://doi.org/10.1039/c3ta13112b
  7. Recent Developments in Synthesis of xLi2MnO3 · (1 − x)LiMO2 (M = Ni, Co, Mn) Cath vol.2, pp.None, 2014, https://doi.org/10.3389/fenrg.2014.00036