Microstructural Evolution and Magnetic Property of Creep-Fatigued Ferritic 9Cr Heat-Resisting Steel

크리프-피로 손상된 페라이트기 9Cr 내열강의 미세조직 발달과 자기적 특성

  • Published : 2007.10.30

Abstract

The ferritic 9Cr-1Mo-V-Nb heat-resisting steel was experimentally studied in order to characterize its microstructural evolution during creep-fatigue by coercivity measurement. The creep-fatigue test was conducted at $550\;^{\circ}C$ with the tensile holding time of 60s and 600s, respectively. The coercivity decreased until the failure and the hardness monotonously decreased for the whole fatigue life. As the life fraction of creep-fatigue increased, the $M_{23}C_6$ carbide coarsened following the Ostwald ripening mechanism. However, the MX carbonitrides did not grow during creep-fatigue due to so stable at $550\;^{\circ}C$. The width of martensite lath increased because of the dislocation recovery at the lath boundaries. The magnetic coercivity has an influence on the microstructural properties such as dislocation, precipitates and martensite lath boundaries, which interpreted in relation to microstructural changes. Consequently, this study proposes a magnetic coercivity to quantify the level of damage and microstructural change during the creep-fatigue of ferritic 9Cr-1Mo-V-Nb steel.

보자력 측정을 통하여 페라이트기 9Cr-1Mo-V-Nb 내열강의 크리프-피로변형 동안 미세조직의 변화를 평가하였다. 크리프-피로시험은 $550\;^{\circ}C$에서 각각 인장유지시간을 60초와 600초로 하여 수행 하였다. 보자력은 파단 전까지 감소하였고 경도는 파단 시까지 지속적으로 감소하였다. 크리프-피로 수명소비율이 증가함에 따라서 $M_{23}C_6$ 탄화물은 오스트왈드 성장기구를 따라서 조대화가 나타났지만 MX 탄질화물은 $550\;^{\circ}C$에서 안정하기 때문에 조대화가 나타나지 않았다. 마르텐사이트 래스 폭은 래스경계에서의 전위회복으로 인해 증가하였다. 보자력은 전위, 석출물 그리고 마르텐사이트 래스경계와 같은 미세조직적 특성에 영향을 받게 되며 이를 미세조직변화와 관련하여 이해하였다. 결과적으로, 본 연구는 페라이트기 9Cr-1Mo-V-Nb 내열강의 크리프-피로변형 동안 미세조직의 변화와 손상 정도를 보자력을 통하여 평가하는 것을 제안하였다.

Keywords

References

  1. F. Abe, 'Bainitic and martensitic creep-resistant steels,' Curr. Opin. Solid State Mater. Sci., Vol. 8, No. 3-4, pp. 305-311, (2004) https://doi.org/10.1016/j.cossms.2004.12.001
  2. P. J. Szabo, 'Microstructure development of creep resistant ferritic steel during creep,' Mater. Sci. Eng., Vol. 387-389, pp. 710-715, (2004)
  3. M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi and K. Kanazawa, 'Microstructures of creep-fatigued 9 - 12% Cr ferritic heat-resisting steels,' Int. J. Fatigue, Vol. 28, No. 3, pp. 300-308, (2006) https://doi.org/10.1016/j.ijfatigue.2005.04.003
  4. P. J. Ennis, A. Zielinska-Lipicc, O. Wachter and A. Czyrska-Filemonowicz, 'Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant,' Acta Mater., Vol. 45, No. 12, pp. 4901-4907, (1997) https://doi.org/10.1016/S1359-6454(97)00176-6
  5. F. Abe, T. Horiuch, M. Taneike and K. Sawada, 'Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature,' Mater. Sci. Eng., Vol. 378, No. 1-2, pp. 299-303, (2004) https://doi.org/10.1016/j.msea.2003.11.073
  6. G. Eggeler, J. C. Earthman, N. Nilsbang and B. Ilschner, 'Microstructural study of creep rupture in a 12% chromium ferritic steel,' Acta Metal., Vol. 37, No. 1, pp, 49-60, (1989) https://doi.org/10.1016/0001-6160(89)90265-4
  7. F. Abe, M. Taneike and K. Sawada, 'Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides,' Inter. J. Pressure Vessels Pip., Vol. 84, No. 1-2, pp. 3-12, (2007) https://doi.org/10.1016/j.ijpvp.2006.09.003
  8. M. Kimur, K. Yamaguchi, M Hayakawa, K. Kobayashi and K. Kanazawa, 'Microstructures of creep-fatigued 9 - 12% Cr ferritic heat-resisting steels,' Inter. J. Fatigue, Vol. 28, pp. 300-308, (2006) https://doi.org/10.1016/j.ijfatigue.2005.04.003
  9. S. Luxenburger and W. Arnold, 'Laser ultrasonic absorption measurement in fatigue-damaged materials,' Ultrasonics, Vol. 40, No. 1-8, pp. 797-801, (2002) https://doi.org/10.1016/S0041-624X(02)00212-3
  10. G. Dobmann, M. Kroning, W. Theiner, H. Willems and U. Fiedler, 'Nondestructive characterization of materials (ultrasonic and micromagnetic techniques) for strength and toughness prediction and the detection of early creep damage,' Nucl. Eng. Design, Vol. 157, No. 1-2. pp. 137-158, (1995) https://doi.org/10.1016/0029-5493(95)00992-L
  11. S. Gupta, A. Ray and E. Keller, 'Online fatigue damage monitoring by ultrasonic measurements: A symbolic dynamics approach,' Inter. J. Fatigue, Vol. 29, No.6, pp. 1100-1114, (2007) https://doi.org/10.1016/j.ijfatigue.2006.09.011
  12. J. W. Byeon, C. S. Kim and S. I. Kwun, 'Evaluation of thermal degradation of 2.25Cr-1Mo steel by magnetic Barkhausen noise,' Phys. Stat. Sol(b), Vol. 241, pp. 1756-1760, (2004) https://doi.org/10.1002/pssb.200304571
  13. M. J. Sablik, 'Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels,' J. Appl. Phys., Vol. 89, No. 10, pp. 5610-5613, (2001) https://doi.org/10.1063/1.1359167
  14. J. Degauque, B. Astie, J. L. Porteseil and R. Vergne, 'Influence of the grain size on the magnetic and magnetomechanical properties of high-purity iron,' J. Magn. Magn. Mater., Vol. 26, pp. 261-263, (1982) https://doi.org/10.1016/0304-8853(82)90166-4
  15. N. Nakai, Y. Furuya and M. Obata, 'Effect of carbide particle morphology and prior austenite grain size on Barkhausen noise in 0.4C-5C-r-Mo-V hot-work tool steel,' Mater. Trans., JIM, Vol. 30, No.3, pp. 197-199, (1989) https://doi.org/10.2320/matertrans1989.30.197
  16. 유상권, 김용일, 남승훈, 유광민, 조육, 손대락, '가역 투자율 측정에 의한 ICr-1Mo-025V 강의 열화도평가', 비파괴검사학회지, 20권 5호, pp. 445-450, (2000)
  17. G. Eggeler, 'The effect of long-term creep on particle coarsening in tempered martensite ferritic steels,' Acta Metall., Vol. 37, No. 12, pp. 3225-3234, (1989) https://doi.org/10.1016/0001-6160(89)90194-6
  18. C. S. Kim, 'Nondestructive Assessment of Microstructural Change by Fatigue and Creep,' Ph. D. thesis, Korea University, Korea, (2007)
  19. F. Abe, 'Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr - W steels,' Mater. Sci. Eng., Vol. 387-389, pp. 565-569, (2004)
  20. K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae and R. Komine, 'Effect of W on recovery of lath structure during creep of high chromium martensitic steels,' Mater. Sci. Eng., Vol. 267, No. 1, pp. 19-25, (1999) https://doi.org/10.1016/S0921-5093(99)00066-0
  21. M. Taneike, F. Abe and K. Sawada, 'Creep-strengthening of steel at high temperatures using nano-sized carbonitrides dispersions,' Nature, Vol. 424, pp. 294-296, (2003) https://doi.org/10.1038/nature01740
  22. M. Hattestrand, M. Schwind and H. O. Andren, 'Microanalysis of two creep resistant 9 - 12% chromium steels,' Mater. Sci. Eng., Vol. 250, No. 1, pp. 27-36, (1998) https://doi.org/10.1016/S0921-5093(98)00532-2
  23. B. D. Cullity, Introduction to Magnetic Materials, 2nd Ed., (Addision-Wesley, New York, USA, 1972) pp. 317-333
  24. M. J. Sablik, 'Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steel,' J. Appl. Phys., Vol. 89, No. 10, pp. 5610-5613, (2001) https://doi.org/10.1063/1.1359167
  25. A. H. Qureshi and L. N. Chaudhary, 'Influence of plastic deformation on coercivity field and intial susceptibility of Fe-3.25% Si alloy,' J. Appl. Phys., Vol. 41, No. 3, pp. 1042-1043, (1970) https://doi.org/10.1063/1.1658808
  26. B. Astie, J. Degauque, J. L. Porteseil and R. Vergne, 'Influence of the dislocation structures on the magnetic and magnetomechanical properties of high-purity iron,' IEEE Trans. Magn., Vol. 17, No.6, pp. 2929-2931, (1981) https://doi.org/10.1109/TMAG.1981.1061496
  27. J. D. Verhoeven, Fundamentals of Physical Metallurgy, John Wiley & Sons, pp. 406, (1975)
  28. J. Degauque, B. Astie, J. L. Porteseil and R. Vergne, 'Influence of the grain size on the magnetic and magneto mechanical properties of high-purity iron,' J. Magn. Magn. Mater., Vol. 26, No. 1-3, pp. 261-263, (1982) https://doi.org/10.1016/0304-8853(82)90166-4
  29. S. Takahashi, J. Echigoya and Z. Motoki, 'Magnetization curves of plastically deformed Fe metals and alloys,' J. Appl. Phys., Vol. 87, No. 2, pp. 805-813, (2000) https://doi.org/10.1063/1.371945