DOI QR코드

DOI QR Code

Design of a 5.8 GHz Broad Band-Pass Filter with Second of Harmonics Suppression Using the Open Stubs

2차 고조파가 억제된 5.8 GHz 광대역 개방형 스터브 대역 통과 여파기 설계

  • Choi, Young-Gu (Department of Electronic Engineering, Kwangwoon University) ;
  • Kim, Bok-Ki (Department of Electronic Engineering, Kwangwoon University)
  • Published : 2007.10.31

Abstract

In this paper, a broadband open stubs band pass filters which can suppress the second harmonics using Z-transform technique, is designed, fabricated and characterized. The proposed broadband filters integrate the band stop filter with the FSCS structure and ${\lambda}_g/4$ open stub in order to suppress the second harmonics. Due to insertion of BSF at input and output terminal, the size of the filter was increased in the conventional filter, however, in the proposed structure, the position of inverter that connects the stubs can be integrated between those stubs, thereby decreasing the size. So, it can be fabricated in the size of $18.7{\times}16.9mm^2$ which is smaller size than conventional one. The measured results of the proposed filters have center frequency of a 5.8 GHz with bandwidth of 95 %, insertion loss of 0.6 dB, return loss of 14 dB. The simulation results are consistent with measurement results. The filter is designed far X-band satellite communication and ITS applications.

본 논문은 Z-변환 기술을 이용한 2차 고조파를 억제시킨 광대역 개방형 스터브 대역 통과 여파기를 설계 및 제작하고 그 특성을 측정하였다. 제안된 여파기는 주파수 선택적 결합 구조(FSCS)와 ${\lambda}_g/4$ 개방형 스터브를 조합한 구조의 대역 저지 여파기를 광대역 개방형 스터브 대역 통과 여파기에 집적화하여 제2 고조파를 억제하였고, 기존의 개방형 스터브 여파기의 입력단과 출력단에 대역 저지 여파기(BSF)를 삽입할 경우 크기가 증가되었으나, 제안된 구조는 스터브를 연결하는 인버터 위치를 스터브들 사이에 집적화 하여 $18.7{\times}16.9mm^2$의 크기로 제작되어 BSF 삽입 이전보다 크기가 작아졌다. 제안된 여파기는 중심 주파수 5.8 GHz에서 대역폭이 95 %, 삽입 손실 0.6 dB, 반사 손실 14 dB의 측정 결과를 얻었으며, 시뮬레이션 결과와 측정 결과가 유사하게 나타났다. 따라서 위성 통신의 X-밴드 및 지능형 교통 정보 시스템(ITS)의 여파기에 적용할 수 있다.

Keywords

References

  1. David M. Pozar, Microwave Engineering, John Wiley & Sons, 2005
  2. Jia-Sheng Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2001
  3. M. G. Lee, T. S. Yun, H. Nam, D. H. Shin, T. J. Baek, J. K. Rhee, and J. C. Lee, 'Millimeter-wave GaAs surface microma chined bandpass filters using the external quality factor', Jpn. J. Appl. Phys. vol. 45, no. 7, pp. 6014-6016, Apr. 2006 https://doi.org/10.1143/JJAP.45.6014
  4. Lin-Chuan Tsai, Ching-Wen Hsue, 'Dual-band band-pass filter using equal-length coupled-serial-shunted lines and Z-transform technique', IEEE Trans. Microwave Theory Tech., vol. 52, no. 4, pp. 1111-1117, Apr. 2004 https://doi.org/10.1109/TMTT.2004.825680
  5. Da-Chiang Chang, Ching-Wen Hsue, 'Design and implementation of filters using transfer function in the Z-domain', IEEE Trans. Microwave Theory Tech, vol. 49, no. 5, pp. 979-985, May. 2001 https://doi.org/10.1109/22.920157
  6. G. Mattaei, L. Young, and E. M. t. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, 1980
  7. IE3D. ver. 12.0, Zeland software Inc. Fremont CA, 2004
  8. Cedric Quendo, Eric Rius, Christian Person, and Michel Ney, 'Integration of optimized low-pass filters in a bandpass filter for out-of-band improvement', IEEE Trans. Microwave Theory Tech., vol. 49, no. 12, pp. 2376-2383, Dec. 2001 https://doi.org/10.1109/22.971624
  9. Cedric Quendo, Christian Person, Eric Rius, and Michel Ney, 'Integration of optimized low-pass filters in a bandpass filter for out-of-band improvement', IEEE MTT-S, vol. 2, pp. 1309-1312, May 2001
  10. S. Franssila, Micro Fabrication, John Wiley & Sons, 2004

Cited by

  1. Miniaturized Narrow Band-pass Filter with λg/4 Short Stubs Using S-Shaped Folded Coupling Structure vol.19, pp.10, 2015, https://doi.org/10.6109/jkiice.2015.19.10.2269