Mixing of Sea Waters in the Northern Part of the East China Sea in Summer

하계 동중국해 북부 해역에서의 해수 혼합

  • Jang, Sung-Tae (Marine Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Lee, Jae-Hak (Marine Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Hong, Chang-Su (Marine Environment Research Department, Korea Ocean Research and Development Institute)
  • 장성태 (한국해양연구원 해양환경연구본부) ;
  • 이재학 (한국해양연구원 해양환경연구본부) ;
  • 홍창수 (한국해양연구원 해양환경연구본부)
  • Published : 2007.11.30

Abstract

In order to investigate the mixing of sea waters on the continental shelf in the northern East China Sea, Korea Ocean Research and Development Institute conducted hydrographic surveys including turbulence measurements using the R/V Eardo in August 2005 and August 2006. The turbulent kinetic energy dissipation rates based on velocity shear measurements are estimated to be $10^{-7}{\sim}10^{4}$, $10^{-7}{\sim}10^{-6}$, and $10^{-7}$ W/kg in the surface layer, bottom layer, and lower thermocline, respectively. The data sets suggest that surface layer water is being constantly mixed by winds. High dissipation rate in the lower thermocline seems to be caused by internal waves. The bottom layer with high dissipation rate also shows high turbidity, indicating the effect of tidal stirring turbulence. The vertical eddy diffusivities are $10^{-3}{\sim}10^{-2}m^2/s$ near the bottom, and these high values appear to arise from both the low stability and high turbulent mixing.

하계 동중국해 북부 대륙붕 해역에서 해수 혼합을 연구하기 위하여 2005년 8월과 2006년 8월에 한국해양연구원 연구선 이어도호를 이용하여 해수 물성 및 난류 관측을 수행하였다. 유속 변형으로부터 산출한 난류운동에너지 소산율은 표층에서 $10^{-7}{\sim}10^{-4}$, 저층에서 $10^{-7}{\sim}10^{-6}$와 수온약층에서 $10^{-7}$ W/kg의 높은 값이 나타났다. 관측 자료는 표층의 경우 바람에 의해 지속적으로 혼합이 이루어짐을 보여주었다. 수온약층 하부에서의 높은 소산율은 내부파의 영향으로 판단된다. 저층의 높은 소산율은 저층의 탁도 분포의 경향과 일치하여 조류에 의한 해저면층 교란의 결과임을 시사해주었다. 바닥에서의 연직확산계수는 낮은 안정도와 높은 난류상태의 복합적인 영향으로 $10^{-3}{\sim}10^{-2}m^2/s$로 높은 값이 나타났다.

Keywords

References

  1. 이흥재 등, 2000. 동중국해 중.서부해역의 해양순환 연구, 한국해양연구원 연구보고서, 428p
  2. Ahn, Y.H., P. Shanmugam and S. Gallegos, 2004. Evolution of suspended sediment patterns in the East China and Yellow Seas, J. Korean Soc. Oceano., 39: 26-34
  3. Beardsley, R.C., R. Limeburner, H. Yu and G.A. Cannon, 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Cont. Shelf Res., 4: 57-76 https://doi.org/10.1016/0278-4343(85)90022-6
  4. Britter, R.E., 1974. An experiment on turbulence in a density-stratified fluid, Ph. D. Thesis, Monash University, Victoria, Australia
  5. Crawford, W.R., and T.R. Osborn, 1979. Microstructure measurements in the Atlantic Equatorial Undercurrent during GATE. Deep-Sea Res., GATE Suppl. II, 26: 285-308
  6. Lee, J.H., I. Lozovatsky, S.T. Jang, C.J. Jang, C.S. Hong and H.J.S. Fernando, 2006. Episodes of nonlinear internal waves in the northern East China Sea. Geophys. Res. Lett., 33, L18601, doi:10.1029/2006GL027136
  7. Lie, H.J., C.H. Cho, J.H. Lee and S. Lee, 2003. Structure and eastward extension of the Changjiang River plume in the East China Sea. J. Geophys. Res., 108(C3), 3077, doi:10.1029/2001JC001194
  8. Matsuno, T., S. Kanari, C. Kobayashi, and T. Hibiya, 1994. Vertical Mixing in the bottom mixed layer near the continental shelf break in the East China Sea. J. Oceanogr., 50: 437-448 https://doi.org/10.1007/BF02234966
  9. Matsuno, T., J.S. Lee, M. Shimizu, S.H. Kim and I.C. Pang, 2006. Measurements of the turbulent energy dissipation rate $\varepsilon$ and an evaluation of the dispersion process of the Changjiang Diluted Water in the East China Sea. J. Geophys. Res., 111, C1S09, doi: 10.1029/2005JC003196
  10. Osborn, T.R., 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10: 83-89 https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
  11. Shen, H., C. Zhang, C. Xiao, and J. Zhu, 1998. Change of the discharge and sediment flux to estuary in Changjiang River. Health of the Yellow Sea edited by G.H. Hong, J. Zhang, and B.K. Park, 129-148
  12. Wolk F., H. Yamazaki, L. Seuront and R.G. Lueck, 2002. A new freefall profiler for measuring biophysical microstructure. J. Atmos. Ocean. Tech., 19: 780-793 https://doi.org/10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2