DOI QR코드

DOI QR Code

Antioxidative Activity of Extracts of Aged Black Garlic on Oxidation of Human Low Density Lipoprotein

숙성 흑마늘 추출물의 Low Density Lipoprotein (LDL)의 항산화 효과

  • Yang, Seung-Taek (Department of Food Science and Biotechnology, Kyungsung University)
  • 양승택 (경성대학교 식품생명공학과)
  • Published : 2007.10.30

Abstract

This study was developed to assess the antioxidative activity of aged black garlic extract on lipid peroxidation and low density lipoprotein (LDL). Antioxidative activity of aged black garlic extract on human low density lipoprotein (LDL) was investigated by monitoring a barbituric acid reactive substance (TBARS). Electron donating ability (EDA) of aged black garlic, ethanol extract was higher than that alliin and water extract. Aged black garlic water and ethanol extracts inhibited the $Cu^{2+}$ mediated oxidation of human LDL in a dose dependent manner at concentration of 10 and $20\;{\mu}g/ml$. Ethanol extract and water extract of aged black garlic almost completely inhibited J774 mediated LDL oxidation in electrophoretic mobility and conjugated diene. These results indicate that aged black garlic might play a protective antioxidant effects on LDL, probably affecting the structural properties for the LDL oxidation.

마늘을 발효시켜 만든 흑마늘의 지질 산화 억제 및 사람 Low Density Lipoprotein (LDL)에 대하여 항산화 활성을 실험하였다. 표준품으로서 마늘의 주성분인 alliin과 흑마늘의 에탄올과 물 추출물의 전자공여능을 각각 비교하여 측정한 결과 흑마늘 에탄을 추출물이 효능이 가장 높았다. 사람 LDL을 $Cu^{2+}$유도 LDL로 산화시킬 때 그 항산화능은 각 시료를 $10\;{\mu}g/ml$$20\;{\mu}g/ml$ 씩 첨가하며 TSARS를 측정한 결과 에탄을 추출물이 항산화 활성이 가장 높았으며 용량 의존형으로 나타났다. 흑마늘의 에탄올과 물추출물을 $10\;{\mu}g/ml$$20\;{\mu}g/ml$ 첨가한 후 J774 유도 산화에 대한 항산화 효과를 측정한 결과 각 추출물은 항산화 효과가 있었고 용량 의존형의 항산화 활성을 나타내었다. 흑마늘의 각 추출물을 이용한 실험에서 전기영동 이동상은 대조구에 비하여 $10\;{\mu}g/ml$$20\;{\mu}g/ml$에서 산화를 억제하였고 공액 2중 결합에 의한 실험에서도 항산화 효과가 있었으며 $20\;{\mu}g/ml$의 농도에서 거의 억제되었다.

Keywords

References

  1. Augusti, K. T. and C. G. Sheela. 1996. Antiperoxide effect of S-allylcystein sulfoxide on insulin secretagogue in diabetic rats. Experimenfia 52, 115-120. https://doi.org/10.1007/BF01923354
  2. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 4617, 1198-1221.
  3. Bordia, A. and H. C. Bansal. 1997. Essential oil of garlic in prevention of atherosclerosis. Lancet 2, 1491-1491.
  4. Bruckdorfer, K. R. 1990. Free radicals, lipid peroxidation and atherosclerosis. Curr. Opin. Lipidol. 1, 529-535. https://doi.org/10.1097/00041433-199012000-00008
  5. Bull, A. W. and L. J. Matnett. 1985. Determination of malondialdehyde by ion-pairing high performance liquid chromatography. Anal. Biochem. 149, 284-290. https://doi.org/10.1016/0003-2697(85)90506-8
  6. Cavallito, C. J., J. S. Buck and C. M. Suter. 1944. Allicin, the antibacterial principles of Allium sativim. II Determination of the chemical structure. J. Am. Chem. Soc. 66, 1952- 1954. https://doi.org/10.1021/ja01239a049
  7. Esterbauer, H., G. Striegl, H. Puhl and M. Rotheneder. 1989. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic. Res. Commun. 6, 67-75. https://doi.org/10.3109/10715768909073429
  8. Greenspan, P. and R. L. Gutman. 1993. Detection by nile red of agarose fel electrophoresed native and modified low density lipoprotein. Electrophoresis 14, 65-68. https://doi.org/10.1002/elps.1150140111
  9. Havel, R. J., H. A. Eder and J. H. Bragdon. 1955. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345-1352. https://doi.org/10.1172/JCI103182
  10. Henricksen, T., E. M. Mahoney and D. Steinberg. 1981. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endotherial cell; recognition by receptor for acetylated low density lipoproteins. Proc. Natl. Acad. Sci. USA 78, 6449-6503.
  11. Herrmann, K. 1976. Flavonols and flavones in plants, A review. J. Food Technol. 11, 433-448. https://doi.org/10.1111/j.1365-2621.1976.tb00743.x
  12. Jessup, W. and R. T. Dean. 1990. Antioxidants in LDL metabolism and atherosclerosis, pp. 139-149, In Emerit, I., Parker, L,, Auclair, C. (eds.), Antioxidants in Therapy and Preventive Medicine, New York.
  13. Jialal, I. and C. Scaccini. 1992. Antioxidants and atherosclerosis. Curr. Opin. Lipidol. 3, 324-328. https://doi.org/10.1097/00041433-199210000-00004
  14. Kandaswami, C. and E. Middleton. 1994. Free radical scavenging and antioxidant activity of plant flavonoids. Adv. Exp. Med. Biol. 366, 351-367. https://doi.org/10.1007/978-1-4615-1833-4_25
  15. Kendler, B. S. 1987. Garlic (Allium sativum) and onion (Allium cepa) : A review of their relationship to cardiovascular disease. Prev. Med. 16, 670-685. https://doi.org/10.1016/0091-7435(87)90050-8
  16. Leake, D. S. and S. M. Rankin. 1990. The oxidative modification of low density lipoproteins by macrophages. Biochem. J. 270, 741-748. https://doi.org/10.1042/bj2700741
  17. Lowry, O. H., N. J. Rosebrough, A. L. Far and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  18. Moore, G. S. and R. D. Atkins. 1977. The fungicidal and fungistatic effects of aqueous garlic extract on medically important yeast like fungi. Mycologia 69, 341-348. https://doi.org/10.2307/3758659
  19. Morel, D. W., P. E. DiCorleto and G. M. Chisholm. 1984. Endothelial and smooth muscle cells after low density lipoproteins in vitro by free radical oxidation. Atherosclerosis 4, 357-364.
  20. Parthasarathy, S., D. Steinberg and J. L. Witztum. 1992. The role of oxidized low density lipoproteins in the pathogenesis of atherosclerosis. Ann. Rev. Med. 43, 219-227. https://doi.org/10.1146/annurev.me.43.020192.001251
  21. Ratty, A. K. and N. P. Das. 1998. Effects of flavonoids on nonenzymic lipid peroxidation, structure activity relationship. Biochem. Med. Metabol. Biol. 39, 69-79. https://doi.org/10.1016/0885-4505(88)90060-6
  22. Ross, R. 1993. The pathogenesis of atherosclerosis: perspective for the 1990s. Nature 362, 801-809. https://doi.org/10.1038/362801a0
  23. Ryu, B. H., J. W. Jeung, L. G. Robert and P. Greenspan. 1990. Antioxidative activity for human low density lipoprotein oxidation by a novel compound purified from marine microbial origin. J. Marine Biotech. 81, 175-182.
  24. Sakurai, T., Y. Yamamoto and M. Nakano. 1994. Glycated low density lipoprotein are much more susceptible to lipid oxidation, pp. 386, In Labuza, T. P., Reineccius, G. A., Monnier, V. M., O'Brien, J. and Baynes, J. W.(eds.). Maillard Reactions in Chemistry, Food and Health, The Royal Society of Chemistry, Cambridge.
  25. Srivastava, K. C., A. Bordia and S. K. Verma. 1995. Garlic (Allium sativum) for disease prevention. South African J. Sci. 91, 68-77.
  26. Steinberg, D., S. Parthasarathy, T. E. Carew, J. C. Khoo and J. L. Wiztum. 1987. Modifications of low density lipoprotein that increases its atherogenicity. N. Engl. J. Med. 320, 915-924. https://doi.org/10.1056/NEJM198904063201407
  27. Steinbrecher, U. P., H. Zhang and M. Lougheed. 1990. Role of oxidatively modified LDL in atherosclerosis. Free Radic. Biol. Med. 9, 155-168.
  28. Tung, H. Y. and M. Y. Chung. 1989. Stability of allicin in garlic juice. J. Food Sci. 54, 977-985. https://doi.org/10.1111/j.1365-2621.1989.tb07926.x
  29. Warshafsky, S., R. S. Kamer and S. L. Sivak. 1993. Effect of garlic on total aerum cholesterol. Ann. Intern. Med. 119, 599-605. https://doi.org/10.7326/0003-4819-119-7_Part_1-199310010-00009
  30. Witztum, J. L. and D. Steinberg. 1991. Role of oxidized low-density lipoprotein in atherogenesis. J. Clin. Invest. 88, 1785-1792. https://doi.org/10.1172/JCI115499
  31. Yaki, K. 1976. A simple fluorometric assay for lipoprotein in blood plasma. Biochem. Med. 15, 212-217. https://doi.org/10.1016/0006-2944(76)90049-1

Cited by

  1. Inhibitory activity of Ecklonia stolonifera and its isolated phlorotannins against Cu2+-induced low-density lipoprotein oxidation vol.78, pp.4, 2012, https://doi.org/10.1007/s12562-012-0511-7
  2. Organosulfur Compounds in Fermented Garlic Extracts and the Effects on Alcohol Induced Cytotoxicity in CYP2E1-Transfected HepG2 Cells vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.342
  3. Anti-Obesity Effect of Red Garlic Composites in Rats Fed a High Fat-Cholesterol Diet vol.22, pp.5, 2012, https://doi.org/10.5352/JLS.2012.22.5.671
  4. Physicochemical Composition of Baked Garlic vol.18, pp.4, 2011, https://doi.org/10.11002/kjfp.2011.18.4.575
  5. Effect of Freezing Pretreatment on the Processing Time and Quality of Black Garlic vol.38, pp.4, 2015, https://doi.org/10.1111/jfpe.12156
  6. Effects of Aged Black Garlic Extract on Ethanol Induced Hangover in Rats vol.20, pp.2, 2010, https://doi.org/10.5352/JLS.2010.20.2.225
  7. Physicochemical Characteristics of Red Garlic During Processing vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.898
  8. Physicochemical Properties, Biological Activity, Health Benefits, and General Limitations of Aged Black Garlic: A Review vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22060919
  9. Quality Characteristics and Antioxidant Activity of Soy Sauce with Added Levels of Black Garlic Extract vol.32, pp.2, 2016, https://doi.org/10.9724/kfcs.2016.32.2.188
  10. Effect of Black Garlic and Mugwort Extracts on Lipids Profile during Restraint Stress vol.42, pp.4, 2013, https://doi.org/10.3746/jkfn.2013.42.4.577
  11. Effects of Dietary Inclusion of Red Ginseng Byproduct on Growth, Body Composition, Serum Chemistry, and Lysozyme Activity in Juvenile Olive Flounder (Paralichthys olivaceus) vol.13, pp.4, 2010, https://doi.org/10.5657/fas.2010.13.4.300
  12. Growth Performance, Hematological Parameter and Fatty Acid Composition of Growing Olive Flounder (Paralichthys olivaceus) to Dietary Inclusion of Kelp Meal, Krill Meal, Garlic Powder or Citrus Meal vol.43, pp.5, 2010, https://doi.org/10.5657/kfas.2010.43.5.557
  13. Effects of Dietary Inclusion of Various Additives on Growth Performance, Hematological Parameters, Fatty Acid Composition, Gene Expression and Histopathological Changes in Juvenile Olive Flounder Paralichthys olivaceus vol.44, pp.2, 2011, https://doi.org/10.5657/kfas.2011.44.2.141
  14. Effect of Garlic Enzymatic Hydrolysates and Natural Color Resource Composites on Lipid Metabolism in Rat Fed a High Fat Diet vol.25, pp.6, 2015, https://doi.org/10.5352/JLS.2015.25.6.663