DOI QR코드

DOI QR Code

Plasma Characteristics and Substrate Temperature Change in Al:ZnO Pulse Sputter Deposition: Effects of Frequency

Al:ZnO의 펄스 스퍼터 증착에서 주파수에 따른 플라즈마의 특성과 기판 온도 변화

  • Yang, Won-Kyun (Department of Materials Science & Engineering, Kunsan National University) ;
  • Joo, Jung-Hoon (Department of Materials Science & Engineering, Kunsan National University)
  • 양원균 (군산대학교 신소재.나노화학 공학부) ;
  • 주정훈 (군산대학교 신소재.나노화학 공학부)
  • Published : 2007.10.31

Abstract

Change of the plasma volume by pulse frequency in a bipolar pulsed DC unbalanced magnetron sputtering was investigated. As increasing the frequency at off duty 10% and at a constant power, the plasma volume was lengthened in vertical direction from the AZO target. When there is an electrically floated substrate, the vertical length of the plasma area was not affected by the pulse frequency. Instead, the diameter of the plasma volume was increased. We found that the temperature rise of a substrate was affected by the pulse frequency, too. As increasing it, the maximum temperature rise of a glass substrate was decreased from $132^{\circ}C\;to\;108^{\circ}C$.

Keywords

References

  1. M. Katayama, Thin Solid Films, 341 (1999) 140 https://doi.org/10.1016/S0040-6090(98)01519-3
  2. Korea Price Data System(PDS), www.koreapds.com
  3. Kurt J. Lesker Company, www.lesker.com
  4. T. Minami, Semicon. Sci. Technol., 20 (2005) S35 https://doi.org/10.1088/0268-1242/20/4/004
  5. M. Chen, X. Wang, Appl. Surf. Sci., 158 (2000) 134 https://doi.org/10.1016/S0169-4332(99)00601-7
  6. Seung-Jae Jung, Young-Hun Han, Jung-joong Lee, J. Kor. lnst. Surf. Eng., 39 (2006) 98
  7. J. H. Joo, J. Vac. Sci. Technol., A18(1) (2003) 23
  8. J. H. Joo, J. Kor. Vac. Soc., 7 (1998) 255
  9. S. J. Jung, Y. H. Han, B. M. Koo, J. J. Lee, J. H. Joo, Thin Solid Film, 475 (2005) 275-278 https://doi.org/10.1016/j.tsf.2004.08.058
  10. H. D. Na, H. S. Park, D. H. Jung, G R. Lee, J. H. Joo, J. J. Lee, Surf. Coat. Technol., 169-170 (2003) 41
  11. H. Kerstein, H. Deutsch, H. Steffen, G. M. W. Kroesen, R. Hippler, Vacuum, 63 (2001) 385 https://doi.org/10.1016/S0042-207X(01)00350-5
  12. C. Niikura, M. Kondo, A. Matsuda, J. Non-Cryst. Solids, 338-340 (2004) 42 https://doi.org/10.1016/j.jnoncrysol.2004.02.018
  13. B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Huepkes, S. Calnan, H. Stiebig, S. Wieder, Thin Solid Films, 511-512 (2006) 548-555
  14. N. Bowden, W. T. S. Huck, K. E. Paul, G M. Whitesides, Appl. Phys. Lett., 75 (1999) 2557 https://doi.org/10.1063/1.125076
  15. Lucel Sirghi, Gheorghe Popa, Yoshinori Hatanaka, Thin Solid Films, 515 (2006) 1334-1339 https://doi.org/10.1016/j.tsf.2006.03.059
  16. M. C. Coen, R. Lehmann, P. Groening, L. Schlapbach, Appl. Surf. Sci., 207 (2003) 276 https://doi.org/10.1016/S0169-4332(02)01503-9
  17. J. P. Biersack, in: P. Mazzoldi, G. W. Arnold (Eds.), Ion Beam Modification of Insulators, Elsevier, Amsterdam, 1987
  18. E. Liston, J. Adhes., 30 (1989) 199 https://doi.org/10.1080/00218468908048206
  19. Sherman, A., Thin Solid Films, 113 (1984) 135 https://doi.org/10.1016/0040-6090(84)90022-1
  20. National Institute of Standard and Technology(NIST), http://physics.nist.gov /PhysRefData/Handbook/index.html