DOI QR코드

DOI QR Code

Preliminary Report of Observed Urban - Rural Gradient of Carbon Dioxide Concentration across Seoul, Suwon, and Icheon in South Korea

도시 - 전원간 이산화탄소(CO2) 농도구배 예비관측 결과

  • Chung, U-Ran (Department of Plant Science, Seoul National University) ;
  • Lee, Kyu-Jong (Department of Plant Science, Seoul National University) ;
  • Lee, Byun-Woo (Department of Plant Science, Seoul National University)
  • 정유란 (서울대학교 식물생산학부) ;
  • 이규종 (서울대학교 식물생산학부) ;
  • 이변우 (서울대학교 식물생산학부)
  • Published : 2007.12.30

Abstract

Urban atmosphere may play as a harbinger for the future climate change with respect to temperature and $CO_2$ concentration. The Seoul metropolitan area is unique in rapid urbanization and industrialization during the last several decades, providing a natural $CO_2$ dome with increased temperature. This study was carried out to evaluate the feasibility of using the urban-rural environmental gradient in replacement of the IPCC mid-term scenario (after 30-50 years). For this, we measured atmospheric $CO_2$ concentration and air temperature at three sites with different degree of urbanization (Seoul, Suwon, and Icheon). Results from 11-month measurement can be summarized as follows: (1) The annual mean $CO_2$ concentration across 3 sites was in the order of Seoul (439 ppm) > Suwon (419 ppm) > Icheon (416 ppm), showing a substantial urban-rural environmental gradient. (2) The diurnal fluctuation in $CO_2$ concentration was greater in summer than in winter, showing the effect of photosynthesis on local $CO_2$ concentration. (3) The daily maximum $CO_2$ concentration was observed at 0500 LST in spring and summer, 0800 LST in autumn, and 0900 LST in winter, showing the sunrise-time dependence. (4) The observed hourly maximum $CO_2$ concentration averaged for the whole period was 446 ppm in Seoul at 0700 LST, while the minimum was 407 ppm in Suwon at 1500 LST. (5) Compared with the background atmospheric concentration of $CO_2$ in Anmyeon-do (377.4 ppm annual mean), $CO_2$ concentration of the study sites was higher by 14% in Seoul, by 10% in Suwon, and by 9% in Icheon. The observed $CO_2$ concentration in Seoul reached already 98% of the 2030-2040 projection (450 ppm) and 80% of the 2040-2050 projection (550 ppm) under the IPCC BAU scenario, showing a feasibility of using the $CO_2$ dome of Seoul as a natural experimental setting for the mid-term climate change impact assessment.

본 연구에서는 서울 도심과 전원 지역간 $CO_2$ 농도 차이가 IPCC 중단기 기후변화 시나리오에 상응하는 차이가 있는지를 확인하기 위해 수도권의 도시기후를 IPCC 기후변화 시나리오를 재현한 "천연실험실"로 활용하고자 서울(도심), 수원(부도심), 이천(전원), 3지역에서 2006년 6월 19일부터 2007년 6월 25일(2007년 3월 3일-5월 22일까지 결측)까지 $CO_2$ 농도를 관측하였으며 이 결과를 요약하면 다음과 같다. 1) 3지점의 연 평균 대기 중 $CO_2$ 농도의 구배가 서울(439 ppm)>수원(419 ppm)>이천(416 ppm)으로 나타났다. 2) 계절에 따른 $CO_2$ 농도의 일변화 변동폭은 여름철에 크게 나타난 반면 겨울철에는 그 폭이 완만해졌다. 3) 계절에 따른 시간대별 대기 중 $CO_2$ 농도는 여름철에는 대체로 새벽 5시에, 가을철에는 오전 8시에, 겨울철에는 오전 9시에, 봄철에는 새벽 5시에 고농도가 나타남으로써 고농도가 나타나는 시간대가 가을철부터 지연되었다가 다시 봄철에는 일출 전후로 옮겨갔다. 4) 시간대별 대기 중 $CO_2$ 농도는 일출 직후에 442 ppm(서울: 0700 LST, Local Standard Time)으로 최대 농도를 보였으며, 최소 $CO_2$ 농도는 광합성이 활발한 오후 시간대로 407 ppm(수원: 1500 LST)으로 나타났다. 5) 배경대기관측소 안면도에서 산정한 배경 $CO_2$ 연평균 농도 377 ppm에 대해 서울은 14%, 수원은 10%, 이천은 9% 높았으며, IPCC BAU Scenario의 2030-2040년 대기 중 $CO_2$ 농도인 450 ppm에 대해 서울은 이미 98%에 도달하였고, 2040-2050년의 550 ppm에 대해서는 80%에 도달하여 우리나라의 도시-전원(서울-이천)간 $CO_2$ 농도차이는 IPCC BAU Scenario의 20-30년 후의 기후변화 시나리오에 상응하는 것으로 판단된다.

Keywords

References

  1. Ainsworth, E. A., and S. P. Long, 2005: What have we learned from 15 years of free-air $CO_{2}$ enrichment (FACE): A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising $CO_{2}$. New Phytologist 165, 351-372 https://doi.org/10.1111/j.1469-8137.2004.01224.x
  2. Conway, T. J., P. Tans, L. S. Waterman, K. W. Thoning, K. A. Masarie, and R. H. Gammon, 1988: Atmospheric carbon dioxide measurements in the remote global troposphere, 1981-1984. Tellus 40B, 81-115 https://doi.org/10.1111/j.1600-0889.1988.tb00214.x
  3. Cho, H. M., M. K. Park, J. C. Nam, D. H. Min, K. R. Kim, B. H. Song, B. S. Kim, S. K. Kim, and Y. S. Chong, 1995: Trends of background concentration of atmospheric carbon dioxide in Korea. Journal of the Korean Meteorological Society 31, 301-312. (in Korean with English Abstract)
  4. Choi, J. Y., U. Chung, and J. I. Yun, 2003: Urban-effect correction to improve accuracy of spatially interpolated temperature estimates in Korea. Journal of Applied Meteorology 42(12), 1711-1719 https://doi.org/10.1175/1520-0450(2003)042<1711:UCTIAO>2.0.CO;2
  5. Chung, Y. S., and P. Tans, 2000: Monitoring greenhouse gases at Tae-Ahn Peninsula, Korea. Journal of the Korean Meteorological Society 36, 25-34
  6. Chung, U., J. Y. Choi, and J. I. Yun, 2004: Urbanization effect on the observed change in mean monthly temperatures between 1951-1980 and 1971-2000 in Korea. Climatic Change 66, 127-136 https://doi.org/10.1023/B:CLIM.0000043136.58100.ce
  7. Gregg, J. W., C. G. Jones, and T. E. Dawson, 2003: Urbanization effects on tree growth in the vicinity of New York city. Nature 424, 183-187 https://doi.org/10.1038/nature01728
  8. Cunnold, D. M., P. J. Fraser, R. F. Weiss, R. G. Prinn, P. G. Simmonds, B. R. Miller, F. N. Alyea, and A. J. Crawford, 1994: Global trends and annual releases of $CCl_{3}F$ and $CCl_{2}F_{2}$ estimated from ALE/GAGE and other measurements form July 1978 to June 1991. Journal of Geophysical Research 99, 1107-1126 https://doi.org/10.1029/93JD02715
  9. Idso, K. E., J. K. Hoober, S. B. Idso, G. W. Wall, and B. A. Kimball, 2001: Atmospheric $CO_{2}$ enrichment influences the synthesis and mobilization of putative vacuolar storage proteins in sour orange tree leaves. Environmental and Experimental Botany 48, 199-211 https://doi.org/10.1016/S0098-8472(02)00017-5
  10. Idso, S. B., B. A. Kimball, P. E. Shaw, W. Widmer, J. T. Vanderslice, D. J. Higgs, A. Montanari, and W. D. Clark, 2002: The effect of elevated atmospheric $CO_2$ on the vitamin C concentration of (sour) orange juice. Agriculture, Ecosystems and Environment 90, 1-7 https://doi.org/10.1016/S0167-8809(01)00267-5
  11. IPCC, 2007: Special Report of the Intergovernmental Panel on Climate Change, CD-ROM
  12. Kimball, B. A., K. Kobayashi, and M. Bindi, 2002: Responses of agricultural crops to free-air $CO_{2}$ enrichment. Advances in Agronomy 77, 293-368 https://doi.org/10.1016/S0065-2113(02)77017-X
  13. Marland, G., T. Boden, A. Brukert, J. Andres, and J. Olivier, 1997: $CO_{2}$ from fossil fuel burning updates on the magnitude distribution and uncertainty of emissions estimates. In Fifth International Carbon Dioxide Conference: External Abstracts
  14. Park, K. J., J. C. Choi, B. C. Choi, and H. S. Chung, 2005: Variation of background-atmospheric concentration of carbon dioxide ($CO_2$ ) in Korea. Journal of the Korean Meteorological Society 41, 955-965
  15. WMO, 1978: International observation handbook for measurement of background atmospheric pollution. No. 491
  16. Ziska, L. H., J. A. Bunce, and E. W. Goins, 2004: Characterization of an urban-rural $CO_2$ /temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia 139, 454-458 https://doi.org/10.1007/s00442-004-1526-2

Cited by

  1. Chilling Requirement for Breaking of Internal Dormancy of Main Apple Cultivars in Korea vol.31, pp.6, 2013, https://doi.org/10.7235/hort.2013.12206
  2. Responses of Two Invasive Plants Under Various Microclimate Conditions in the Seoul Metropolitan Region vol.49, pp.6, 2012, https://doi.org/10.1007/s00267-012-9852-3
  3. Impacts of Urban High Temperature Events on Physiology of Apple Trees: A Case Study of 'Fuji'/M.9 Apple Trees in Daegu, Korea vol.15, pp.3, 2013, https://doi.org/10.5532/KJAFM.2013.15.3.130
  4. Influence of Elevated CO2and Air Temperature on Photosynthesis, Shoot Growth, and Fruit Quality of 'Fuji'/M.9 Apple Tree vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.245
  5. Overestimation of on-road air quality surveying data measured with a mobile laboratory caused by exhaust plumes of a vehicle ahead in dense traffic areas vol.218, 2016, https://doi.org/10.1016/j.envpol.2016.08.065
  6. Carbon dioxide concentration and flux in an urban residential area in Seoul, Korea vol.31, pp.5, 2014, https://doi.org/10.1007/s00376-013-3168-y