Effects of Hydrogen Peroxide on Neuronal Excitability and Synaptic Transmission in Rat Substantia Gelatinosa Neurons

  • Son, Yong (Dept. of Anesthesiology, College of Medicine) ;
  • Chun, Sang-Woo (Dept. of Oral Physiology, College of Dentistry, Wonkwang University)
  • Published : 2007.12.31

Abstract

The superficial dorsal horn, particularly substantia gelatinosa (SG) in the spinal cord, receives inputs from small-diameter primary afferents that predominantly convey noxious sensation. Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS are also involved in persistent pain through a spinal mechanism. In the present study, whole cell patch clamp recordings were carried out on SG neurons in spinal cord slice of young rats to investigate the effects of hydrogen peroxide on neuronal excitability and excitatory synaptic transmission. In current clamp condition, tert-buthyl hydroperoxide (t-BuOOH), an ROS donor, depolarized membrane potential of SG neurons and increased the neuronal firing frequencies evoked by depolarizing current pulses. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) or ascorbate, ROS scavengers, t-BuOOH did not induce hyperexcitability. In voltage clamp condition, t-BuOOH increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), and monosynaptically evoked excitatory postsynaptic currents (eEPSCs) by electrical stimulation of the ipsilateral dorsal root. These data suggest that ROS generated by peripheral nerve injury can modulate the excitability of the SG neurons via pre- and postsynaptic actions.

Keywords

References

  1. Abe, K. and Saito, H.: Characterization of t-butyl hydroperoxide toxicity in cultured rat cortical neurons and astrocytes. Pharmacol. Toxicol. 83:40-46, 1998 https://doi.org/10.1111/j.1600-0773.1998.tb01440.x
  2. Akaishi, T., Nakazawa, K., Sato, K., Saito, H., Ohno, Y. and Ito, Y.: Hydrogen peroxide modulates whole cell $Ca^{2+}$ currents through L-type channels in cultured rat dentate granule cells. Neurosci. Lett. 356:25-28, 2004 https://doi.org/10.1016/j.neulet.2003.11.012
  3. Avshalumov, M.V., Chen, B.T., Koos, T. and Rice, M.E.: Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J. Neurosci. 25:4222-4231, 2005 https://doi.org/10.1523/JNEUROSCI.4701-04.2005
  4. Calabrese, V., Lodi, R., Tonon, C., D'Agata, V., Sapienza, M., Scapagnini, G., Mangiameli, A., Pennisi, G., Stella, A.M. and Butterfield, D.A.: Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J. Neurol. Sci. 233: 145-162, 2005 https://doi.org/10.1016/j.jns.2005.03.012
  5. Cook, A.J., Woolf, C.J., Wall, P.D. and Mcmahon, S.B.: Dynamic receptive field plasticity in rat spinal cord dorsal hom following C primary afferent input. Nature 325:151-153, 1987 https://doi.org/10.1038/325151a0
  6. Chang, D.J., Lim, C.S., Lee, S.H. and Kaang, B.K.: Hydrogen peroxide modulates $K^+$ ion currents in cultured Aplysia sensory neurons. Brain Res. 970: 159-168, 2003 https://doi.org/10.1016/S0006-8993(03)02316-3
  7. Chuang, S.C., Bianchi, R. and Wong, R.K.: Group I mGluR activation turns on a voltage-gated inward current in hippocampal pyramidal cells. J. Neurophysiol. 83:2844-2853, 2000 https://doi.org/10.1152/jn.2000.83.5.2844
  8. Chung, J.M. and Chung, K.: Importance of hyperexcitability of DRG neurons in neuropathic pain. Pain Practice 2:87-97, 2002 https://doi.org/10.1046/j.1533-2500.2002.02011.x
  9. Djordjevic, V.B.: Free radicals in cell biology. Int. Rev. Cytol. 237:57-89, 2004 https://doi.org/10.1016/S0074-7696(04)37002-6
  10. Devor, M. and Seltzer, Z.: Pathophysiology of damaged nerves in relation to chronic pain. In: Wall PD, Melzack R., editors. Textbook of pain. Edinburgh: Churchill Livingstone 12-164, 1999
  11. Droge, W.: Free radicals in the physiological control of cell function. Physiol. Rev. 82:47-95, 2002 https://doi.org/10.1152/physrev.00018.2001
  12. Favero, T.G., Zable, A.C. and Abramson, J.J.: Hydrogen peroxide stimulates the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 270:25557-25563, 1995 https://doi.org/10.1074/jbc.270.43.25557
  13. Gruss, M., Ettorre, G., Stehr, AlJ., Henrich, M., Hempelmann, G. and Scholz, Al: Moderate hypoxia influences excitability and blocks dendrotoxin sensitive K+ currents in rat primary sensory neurons. Molecular Pain 2:12-25, 2006 https://doi.org/10.1186/1744-8069-2-12
  14. Haley, J.E., Dickenson, A.H. and Schachter, M.: Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacol. 31:251-258, 1992 https://doi.org/10.1016/0028-3908(92)90175-O
  15. Hirono, M., Konishi, S. and Yoshioka, T.: Phospholipase Cindependent group I metabotropic glutamate receptor-mediated inward current in mouse Purkinje cell. Biochem. Biophys. Res. Commun. 251:753-758, 1998 https://doi.org/10.1006/bbrc.1998.9465
  16. Hu, Q., Zheng, G., Zweier, J.L., Deshpande, S., Irani, K. and Ziegelstein, R.C.: NADPH oxidase activation increases the sensitivity of intracellular $Ca^{2+}$ stores to inositol 1,4,5-trisphosphate in human endothelial cells. J. Biol. Chem. 275:15749-15757, 2000 https://doi.org/10.1074/jbc.M000381200
  17. Kamsler, A. and Segal, M.: Hydrogen peroxide modulation of synaptic plasticity. J. Neurosci. 23:269-276, 2003 https://doi.org/10.1523/JNEUROSCI.23-01-00269.2003
  18. Khalil, Z., Liu, T. and Helme, R.D.: Free radicals contribute to the reduction in peripheral vascular responses and the maintenance of thermal hyperalgesia in rats with chronic constriction injury. Pain 79:31-37, 1999 https://doi.org/10.1016/S0304-3959(98)00143-2
  19. Khalil, Z. and Khodr, B.: A role for free radicals and nitric oxide in delayed recovery in aged rats with chronic constriction nerve injury. Free Rad. Biol. Med. 31:430-439, 2001 https://doi.org/10.1016/S0891-5849(01)00597-4
  20. Kim, H.K., Park, S.K., Zhou, J.L., Taglialatela, G., Chung, K., Coggeshall, R.E. and Chung, J.M.: Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111:116-124, 2004 https://doi.org/10.1016/j.pain.2004.06.008
  21. Kim, H.K., Kim, J.H., Gao, X., Zhou, J.L., Lee, I., Chung, K. and Chung, J.M.: Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain. Pain 122:53-62, 2006 https://doi.org/10.1016/j.pain.2006.01.013
  22. Klann, E.: Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CAl. J. Neurophysiol. 80:452-457, 1998 https://doi.org/10.1152/jn.1998.80.1.452
  23. Kumazawa, T. and Perl, E.R.: Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indication of their place in dorsal hom functional organization. J. Comp. Neurol. 177:417-434, 1978 https://doi.org/10.1002/cne.901770305
  24. Levy, D. and Zochodne, D.W.: Local nitric oxide synthase activity in a model of neuropathic pain. Eur. J. Neurosci. 10: 1846-1855, 1998 https://doi.org/10.1046/j.1460-9568.1998.00186.x
  25. Levy, D., Hoke, A. and Zochodne, D.W.: Local expression of inducible nitric oxide synthase in an animal model of neuropathic pain. Neurosci. Lett. 260:207-209, 1999 https://doi.org/10.1016/S0304-3940(98)00982-3
  26. Liu, D., Liu, J., Sun, D. and Wen, J.: The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber-Weiss reaction. J. Neurotrauma 21:805-816, 2004 https://doi.org/10.1089/0897715041269650
  27. McGeer, E.G. and McGeer, P.L.: Brain inflammation in Alzheimer disease and the therapeutic implications. Curr, Pharm. Res. 5:821-836, 1999
  28. Melnick, I.V., Santos, S.F., Szokol, K., Szucs, P. and Safronov, B.V.: Ionic basis of tonic firing in spinal substantia gelatinosa neurons of rat. J. Neurophysiol. 91:646-655, 2004a https://doi.org/10.1152/jn.00883.2003
  29. Melnick, I.V., Santos, F.A. and Safronov, B.V.: Mechanism of spike frequency adaptation in substantia gelatinosa neurones of rat. J. Physiol. 559:383-395, 2004b https://doi.org/10.1113/jphysiol.2004.066415
  30. Moore, K.A., Kohno, T., Karchewski, L.A., Scholz, J., Baba, H. and Woolf, C,J.: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal hom of the spinal cord. J. Neurosci. 22:6724-6731, 2002 https://doi.org/10.1523/JNEUROSCI.22-15-06724.2002
  31. Muller, M., Fontana, A., Zbinden, G. and Gahwiler, B.H.: Effects of interferons and hydrogen peroxide on CA3 pyramidal cells in rat hippocampal slice cultures. Brain Res. 619: 157-162, 1993 https://doi.org/10.1016/0006-8993(93)91607-T
  32. Muller, W. and Bittner, K.: Differential oxidative modulation of voltage-dependent $K^+$ currents in rat hippocampal neurons. J. Neurophysiol. 87:2990-2995, 2001
  33. Parman, T., Wiley, M.J. and Wells, P.G.: Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat. Med. 5:582-585, 1999 https://doi.org/10.1038/8466
  34. Park, Y.K., Jung, S.J., Yoo, J.E., Lim, W. and Kim, J.: Effect of acute hypoxia on ATP-sensitive potassium currents in substantia gelatinosa neurons of juvenile rats. Eur. J. Physiol. 446:600-606, 2003 https://doi.org/10.1007/s00424-003-1113-0
  35. Park, E.S., Gao, X., Chung, J.M. and Chung, K.: Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal doesal hom neurons. Neurosci. Lett. 391:108-111, 2006 https://doi.org/10.1016/j.neulet.2005.08.055
  36. Pellmar, T.C.: Peroxide alters neuronal excitability in the CAl region of guinea-pig hippocampus in vitro. Neurosci. 23:447-456, 1987 https://doi.org/10.1016/0306-4522(87)90068-6
  37. Perrais, D. and Ropert, N.: Effect of zolpoidem on miniature IPSCs and occupancy of postsynaptic $CABA_A$ receptors in central synapses. J. Neurosci. 19:578-588, 1999 https://doi.org/10.1523/JNEUROSCI.19-02-00578.1999
  38. Redondo, P.C., Salido, G.M., Rosado, J.A. and Pariente, J.A.: Effect of hydrogen peroxide on Ca2+ mobilisation in human platelets through sulphydryl oxidation dependent and independent mechanisms. Biochem. Pharmacol. 67:491-502, 2004 https://doi.org/10.1016/j.bcp.2003.09.031
  39. Sheen, K. and Chung, J.M.: Signs of neuropathic pain depend on signals fro, injured nerve fibers in a rat model. Brain Res. 610:62-68, 1993 https://doi.org/10.1016/0006-8993(93)91217-G
  40. Smythies, J.: Redox mechanisms at the glutamate synapse and their significance: a review. Eur. J. Pharmacol. 370:1-7, 1999 https://doi.org/10.1016/S0014-2999(99)00048-5
  41. Sohn, J.H., Han, K.L., Lee, S.H. and Hwang, J.K.: Protective effects of panduratin A against oxidative damage of tertbutylhydroperoxide in human HepG2 cells. Biol. Pharm. Bull. 28: 1083-1086, 2005 https://doi.org/10.1248/bpb.28.1083
  42. Sobey, C.G., Heistad, D.D. and Faraci, F.M.: Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate $K^+$ channels. Stroke 28:2290-2294 1997 https://doi.org/10.1161/01.STR.28.11.2290
  43. Sukhotinsky, I., Ben-Dor, E., Raber, P. and Devor, M.: Key role of the dorsal root ganglion in neuropathic tactile hypersensibility. Eur. J. Pain 8:135-143, 2004 https://doi.org/10.1016/S1090-3801(03)00086-7
  44. Takahashi, A., Mikami, M. and Yang, J.: Hydrogen peroxide increases GABAergic mIPSC through presynaptic release of calcium from $IP_3$ receptor-sensitive stores in spinal cord substantia gelatinosa neurons. European J. Neurosci. 25:705-716, 2007 https://doi.org/10.1111/j.1460-9568.2007.05323.x
  45. Tsuzuki, K., Xing, H., Ling, J. and Gu, J.G.: Menthol-induced $Ca^{2+}$ release from presynaptic $Ca^{++}$ stores potentiates sensory synaptic transmission. J. Neurosci. 24:762-771, 2004 https://doi.org/10.1523/JNEUROSCI.4658-03.2004
  46. Varela, D., Simon, F., Riveros, A., Jorgensen, F. and Stutzin, A.: NAD(P)H oxidase-derived $H_2O_2$ signals chloride channel activation in cell volume regulation and cell proliferation. J. Biol. Chem. 279:13301-13304, 2004 https://doi.org/10.1074/jbc.C400020200
  47. Wang, Z.Q., Porreca, F., Cuzzocrea, S., Galen, K., Lightfoot, R. and Masini, E.: A newly identified role for superoxide in inflammatory pain. J. Pharmacol. Exp. Ther. 309:869-878, 2004 https://doi.org/10.1124/jpet.103.064154
  48. Wehage, E., Eisfeld, J., Heiner, I., Jungling, E., Zitt, C. and Luckhoff, A.: Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J. Biol. Chem. 277:23150-23156, 2002 https://doi.org/10.1074/jbc.M112096200
  49. Wells, P.G., Kim, P.M., Laposa, R.R., Nicol, C.J., Parman, T. and Winn, L.M.: Oxidative damage in chemical teratogenesis. Mutat. Res. 396:65-78, 1997 https://doi.org/10.1016/S0027-5107(97)00175-9
  50. Willis, W.D.: Central plastic responses to pain. In Gebhart GF, Hammond DL, Jensen TS. Proceedings of the 7th world congress on pain, Progress in pain research and management, IASP Press, Seattle, 301-321, 1994
  51. Woolf, C.J. and Salter, M.W.: Neuronal plasticity: increasing the gain in pain. Science 288: 1765-1768, 2000 https://doi.org/10.1126/science.288.5472.1765
  52. Woolf, C.J. and Thompson, S.W.N.: The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implication for the treatment of post-injury pain hypersensitivity states. Pain 44:293-299, 1991 https://doi.org/10.1016/0304-3959(91)90100-C
  53. Woolf, C.J. and Costigan, M.: Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc. Natl. Acad Sci. U.S.A. 96:7723-7730, 1999
  54. Yoshimura, M. and Jessel, T.M.: Membrane properties of rat substantia gelatinosa neurons in vitro. J. Neurophysiol. 62:109-118, 1989 https://doi.org/10.1152/jn.1989.62.1.109
  55. Yoon, Y.W., Na, H.S. and Chung, J.M.: Contributions of injured and intract afferents to neuropathic pain in an experimental rat model. Pain 64:27-36, 1996 https://doi.org/10.1016/0304-3959(95)00096-8