Inhibition of LPS Induced iNOS, COX-2 and Cytokines Expression by $Genistein-4'-O-{\alpha}-L-Rhamnopyranosyl-(1-2)-{\beta}-D-Glucopyranoside$ through the $NF-{\kappa}B$ Inactivation in RAW 264.7 Cells

$Genistein-4'-O-{\alpha}-L-rhamnopyranosyl-(1-2)-{\beta}-D-glucopyranoside$의 RAW 264.7 세포에서 $NF-{\kappa}B$ 불활성화를 통한 LPS에 의해 유도되는 iNOS, COX-2 그리고 cytokine들의 발현 저해효과

  • Park, Seung-Jae (Department of pharmaceutical Biochemistry, College of Pharmacy, Kyung-Hee University) ;
  • Kim, Ji-Yeon (Department of pharmaceutical Biochemistry, College of Pharmacy, Kyung-Hee University) ;
  • Jang, Young-Pyo (Department of pharmaceutical Biochemistry, College of Pharmacy, Kyung-Hee University) ;
  • Cho, Young-Wuk (Department of Physiology, College of Medicin,e Kyung-Hee University) ;
  • Ahn, Eun-Mi (Department of Herbal Food Science, Daegu Haany University) ;
  • Baek, Nam-In (Department of Life Science, Kyung-Hee University) ;
  • Lee, Kyung-Tae (Department of pharmaceutical Biochemistry, College of Pharmacy, Kyung-Hee University)
  • Published : 2007.12.31

Abstract

This study were designed to evaluate the anti-inflammatory effects of $genistein-4'-O-{\alpha}-L-rhamnopyranosyl-(1-2)-{\beta}-D-glucopyranoside$ (GRG) isolated from Sophora japonica (Leguminosae) on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin ($PGE_2$) production by RAW 264.7 cell line. GRG significantly inhibited the LPS-induced NO and $PGE_2$ production. Consistent with these observations, GRG reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, the release and the mRNA expression levels of tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ and interleukin-6 (IL-6) were also reduced by GRG. Moreover, GRG attenuated the LPS-induced activation of nuclear factor-kappa B ($NF-{\kappa}B$), a transcription factor necessary for pro-inflammatory mediators, iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expression. These results suggest that the down regulation of iNOS, COX-2, $TNF-{\alpha}$, and IL-6 expression by GRG are achieved by the downregulation of $NF-{\kappa}B$ activity, and that is also responsible for its anti-inflammatory effects.

Keywords

References

  1. Willoughby, D. A. (1975) Human arthritis applied to animal models. Towards a better therapy. Ann. Rheum. Dis., 34: 471-478 https://doi.org/10.1136/ard.34.6.471
  2. Axtelle, T. and Pribble, J. (2001) IC14, a CD14 specific monoclonal antibody is a potential treatment for patients with severe sepsis. J. Endotoxin. Res. 7: 310-314 https://doi.org/10.1177/09680519010070040201
  3. Lee, E. S., Ju, H. K., Moon, T. C., Lee, E., Jahng, Y., Lee S. H., Son, J. K., Baek, S. H. and Chang, H. W. (2004) Inhibition of nitric oxide and tumor necrosis factor$\alpha$ (TNF-$\alpha$) production by propenone compound through blockade of nuclear factor (NF)-$\kappa B$ activation in cultured murine macrophage. Biol. Pharm. Bull. 27: 617-620 https://doi.org/10.1248/bpb.27.617
  4. MukIS, N., Ishikawa, Y., Ikeda, N., Fujioka, N., Watanabe, S. and Kuno, K. (1996) Novel insight into molecular mechanism of endotoxin shock; biochemical analysis of LPS receptor signaling in a cell-free system targeting NF-kapperB and regulation of cytokine production/action through beta2 integrin in vivo. J. Leukoc. Biol. 59: 145-151 https://doi.org/10.1002/jlb.59.2.145
  5. Lazarov, S., Balutsov, M. and lanev, E. (2000) The role of bacterial endotoxins, receptors and cytokines in the pathogenisis of septic(endotoxin) shock. Vutr. Boles. 32: 33-40
  6. Scott, M. G. and Hancock, R. E. (2000) Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20: 407-431
  7. Vane, J. A. (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New. Biol. 23: 232-235
  8. Funk, C. D., Frunk, L. B., Kennedy, M. E., Pong, A. S. and Fitzgerald, G. A. (1991) Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 5: 2304-2312 https://doi.org/10.1096/fasebj.5.9.1907252
  9. Moncada, S., Palmer, R. M. and Higgs, E. A. (1991) Nitric oxide:physiology. Pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142
  10. Nathan, C. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J. 6: 3051-3064 https://doi.org/10.1096/fasebj.6.12.1381691
  11. Stuehr, H. H. J., Kwon, N. S., Weise, M. and Nathan, C. (1991) Purification of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN- containing flavoprotein. Proc. Natl. Sci. USA. 88: 7773-7777
  12. McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F. and Wahl, S. M. (1993) Suppression of arthritis by an inhibitor of nitic oxide synthase. J. Exp. Med. 178: 749-754 https://doi.org/10.1084/jem.178.2.749
  13. Weisz, A., Cicatiello, I. and Esumi, H. (1996) Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterical lipopolysaccharide and NG-monomethyl-L-arginene. Biochem. J. 316: 209-215 https://doi.org/10.1042/bj3160209
  14. O'Neill, G. and Hutchinson, A.F. (1993) Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett. 330: 156-160
  15. Willeaume, V., Kruys, V., Mijatovic, T. and Huez, G. (1995) Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J. Inflamm. 46: 1-12
  16. Van Snick, J. (1990) IL-6: an overview. Annu. Rev. Immunol. 8: 253-278 https://doi.org/10.1146/annurev.iy.08.040190.001345
  17. Liu, S.F. and Malik, A.B. (2005) NF-$_KB$ activation as a pathological mechanism of septic shock and inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 290: L622-L645 https://doi.org/10.1152/ajplung.00477.2005
  18. Michael, E. E. (1986) Manual of cultivated broad-leaved tress & shrubs. Volume, Timber Press, Protland, Oregon. pp. 325-327
  19. Harborne, J. B. and Wiliam, C. A. (2000) Advances in flavonoid research since 1992. Phytochemistry. 55: 481-504 https://doi.org/10.1016/S0031-9422(00)00235-1
  20. Wenzel, U., Kuntz, S., Brendel, M. D. and Daniel, H. (2000) Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res. 60: 3823-3831
  21. Nature, and Medicine study association of Korea, Life-Chinese Medicine Folk Medicine. DongBu-MunHwaSa. pp. 21 (1985)
  22. Kim, H. J., Kim, M. K., Shim, J. G., Yeom, S. H., Kwon, S. H. and Lee, M. W. (2004) Anti-oxidative phenolic compounds from Sophorae fructus. Nat. Prod. Sci. 10: 330-334
  23. Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K. and Lee, S.S. (2001) Molecular mechanism underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481: 243-268 https://doi.org/10.1016/S0027-5107(01)00183-X
  24. Jun, M. R., Hong, J. G., Jeong, W. S. and Ho, C. T. (2005) Suppression of arachidonic acid metabolism and nitric oxide formation by kudzu isoflavones in murine macrophages. Mol. Nutr. Food res. 49: 1154-1159 https://doi.org/10.1002/mnfr.200500103
  25. Verdrengh, M., Jonsson, I. M., Holmdahl, R. and Tarkowski, A. (2003) genistein as an anti-inflammatory agent. Inflamm. Res. 52: 341-346 https://doi.org/10.1007/s00011-003-1182-8
  26. Iontcheva, I., Amar, S., Zawawi, K.H., Kantarci, A. and Van Dyke, T.E. (2004). Role for moesin in lipopolysaccharidestimulated signal transduction. Infect Immun. 72: 2312-2320 https://doi.org/10.1128/IAI.72.4.2312-2320.2004
  27. Iontcheva, I., Amar, S., Zawawi, K.H., Kantarci, A. and Van Dyke, T.E. (2004) Role for moesin in lipopolysaccharidestimulated signal transduction. Infect Immun. 72: 2312-2320 https://doi.org/10.1128/IAI.72.4.2312-2320.2004
  28. Gomez, P.F., Pillinger, M.H., Attur, M., Marjanovic, N., Dave, M., Park, J., Bingham, C.O., Al-Mussawir, H. and Abramson, S.B. (2005). Resolution of inflammation: prostaglandin $E_2$ dissociates nuclear trafficking of individual NFkappa B subunits (p65, p50) in stimulated rheumatoid synovial fibroblasts. J. Immunol. 175: 6924-6930 https://doi.org/10.4049/jimmunol.175.10.6924
  29. Seibert, K., Zhang, Y., Leahy, K., Hauser, S., Masferrer, J., Perkins, W., Lee, L. and Ksakson, P. (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. U.S.A. 91: 12013-12017
  30. Masferrer, J., Zweifel B. S., Manning, P. T., Hauser, S. D., Leahy, K. M., Smith, W. G., Isacson, P. C. and Seibert, K. (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. U.S.A. 91: 3228-3232
  31. Feldmann, M., Brennan, F. M. and Maini, R. N. (1996) Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14: 397-440 https://doi.org/10.1146/annurev.immunol.14.1.397
  32. Karin, M. and Ben-Neriah, Y. (2000) Phosphorylation meets ubiquitination: the control of NF-B activity. Annu. Rev. Immunol. 18: 621-663 https://doi.org/10.1146/annurev.immunol.18.1.621