Effect of A-Zeolite on the Crystallization Behavior of In-situ Polymerized Poly(ethylene terephthalate) (PET) Nanocomposites

  • Shin, Young-Hak (Department of Fiber & Polymer Engineering, College of Engineering, Hanyang University) ;
  • Lee, Wan-Duk (Department of Fiber & Polymer Engineering, College of Engineering, Hanyang University) ;
  • Im, Seung-Soon (Department of Fiber & Polymer Engineering, College of Engineering, Hanyang University)
  • Published : 2007.12.31

Abstract

The crystallization behavior and fine structure of poly(ethylene terephthalate) (PET)/A-zeolite nanocomposites were assessed via differential scanning calorimetry (DSC) and time-resolved small-angle X-ray scattering (TR-SAXS). The Avrami exponent increased from 3.5 to approximately 4.5 with increasing A-zeolite contents, thereby indicating a change in crystal growth formation. The rate constant, k, evidenced an increasing trend with increases in A-zeolite contents. The SAXS data revealed morphological changes occurring during isothermal crystallization. As the zeolite content increased, the long period and amorphous region size also increased. It has been suggested that, since PET molecules passed through the zeolite pores, some of them are rejected into the amorphous region, thereby resulting in increased amorphous region size and increased long period, respectively. In addition, as PET chains piercing into A-zeolite pores cannot precipitate perfect crystal folding, imperfect crystals begin to melt at an earlier temperature, as was revealed by the SAXS profiles obtained during heating. However, the spherulite size was reduced with increasing nanofiller content, because impingement between adjacent spherulites in the nanocomposite occurs earlier than that of homo PET, due to the increase in nucleating sites.

Keywords

References

  1. R. Sareen and S. K. Gupta, J. Appl. Polym. Sci., 58, 2357 (1994)
  2. G. Zhang, T. Shichi, and K. Takagi, Mater. Lett., 57, 1858 (2003) https://doi.org/10.1016/S0167-577X(02)01089-3
  3. Y. Wang, C. Shen, H. Li, Q. Li, and J. Chen, J. Appl. Polym. Sci., 91, 308 (2004) https://doi.org/10.1002/app.13297
  4. W. Liu, X. Tian, P. Cui, Y. Li, K. Zheng, and Y. Yang, J. Appl. Polym. Sci., 91, 1229 (2004) https://doi.org/10.1002/app.13284
  5. Y. C. Ke, Z. B. Yang, and C. F. Zhu, J. Appl. Polym. Sci., 85, 2677 (2002)
  6. J. H. Chang, S. J. Kim, Y. L. Joo, and S. S. Im, Polymer, 24, 919 (2004)
  7. S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of Zeolite Science and Technology, Marcel Dekker, New York, 2003, p 85
  8. H. Pehlivan, D. Balkose, S. Ulku, and F. Tihminlioglu, Compos. Sci. Technol., 65, 2049 (2005) https://doi.org/10.1016/j.compscitech.2005.04.011
  9. F. Ozmihcl, D. Balkose, and S. Ulku, J. Appl. Polym. Sci., 82, 2913 (2001) https://doi.org/10.1002/app.1816
  10. H. L. Frisch, S. Maaref, Y. Xue, G. Beaucage, Z. Pu, and J. E. Mark, J. Polym. Sci., 34, 673 (1996)
  11. H. L. Frisch, Y. Xue, and S. Maaref, Macromol. Symp., 106, 147 (1996)
  12. H. L. Frisch and J. E. Mark, Chem. Mater., 8, 1735 (1996)
  13. C. G. Wu and T. Bein, Science, 264, 1757 (1994) https://doi.org/10.1126/science.264.5161.994
  14. C. G. Wu and T. Bein, Science, 266, 1013 (1994) https://doi.org/10.1126/science.7973682
  15. W. G. Hahm, H. S. Myung, and S. S. Im, Macromol. Res., 12, 85 (2004) https://doi.org/10.1007/BF03218999
  16. M. J. Avrami, Chem. Phys., 7, 1103 (1939)
  17. M. J. Avrami, Chem. Phys., 8, 212 (1940)
  18. M. Run, S. Wu, D. Zhang, and G. Wu, Polymer, 46, 5308 (2005) https://doi.org/10.1016/j.polymer.2005.04.031
  19. T. M. Wu and C. Y. Liu, Polymer, 46, 5621 (2005) https://doi.org/10.1016/j.polymer.2005.04.071
  20. W. Weng, G. Chen, and D. Wu, Polymer, 44, 8119 (2003) https://doi.org/10.1016/j.polymer.2003.10.028
  21. S. Z. D. Cheng and B. Wunderlich, Macromolecules, 21, 789 (1988)
  22. I. Y. Phang, K. Pramoda, T. Liu, and C. He, Polym. Int., 53, 1282 (2004) https://doi.org/10.1002/pi.1513
  23. J. D. Hoffman and J. J. Weeks, J. Res. Nat. Bur. Stand, 66A, 13 (1962)
  24. J. D. Hoffman and R. L. Miller, Polymer, 38, 3151 (1997)
  25. H. Marand, J. Xu, and S. Srinivas, Macromolecules, 31, 8219 (1998)
  26. F. Avalos, M. A. Lopez-Manchado, and M. Arroyo, Polymer, 39, 6173 (1998)
  27. J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, in Treatise on Solid State Chemistry, N. B. Hannay, Ed., Plenum Press, New York, Chapter 7, 1976
  28. W. D. Lee, E. S. Yoo, and S. S. Im, Polymer, 44, 6617 (2003) https://doi.org/10.1016/j.polymer.2003.08.002
  29. X. F. Lu and J. N. Hay, Polymer, 42, 9423 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  30. J. Ma, S. Zhang, Z. Qi, G. Li, and Y. Hu, J. Appl. Polym. Sci., 83, 1978 (2002)
  31. R. Verma, H. Marand, and B. S. Hsiao, Macromolecules, 29, 7767 (1996)
  32. K. N. Kruger and H. G. Zachmann, Macromolecules, 26, 5202 (1993)
  33. B. S. Hsiao, K. H. Gardner, D. Q. Wu, and B. Chu, Polymer, 34, 3986 (1993)
  34. B. S. Hsiao, K. H. Gardner, D. Q. Wu, and B. Chu, Polymer, 34, 3996 (1993)
  35. W. D. Lee and S. S. Im, J. Polym. Sci.; Part B: Polym. Phys., 43, 805 (2005) https://doi.org/10.1002/polb.20370
  36. C. Fougnies, P. Damman, M. Dosiere, and M. H. J. Koch, Macromolecules, 30, 1392 (1997)
  37. R. Verma, V. Velikov, R. G. Kander, H. Marand, B. Chu, and B. S. Hsiao, Polymer, 37, 5357 (1996)
  38. W. D. Lee and S. S. Im, J. Polym. Sci.; Part B: Polym. Phys., 45, 28 (2007) https://doi.org/10.1002/polb.20993
  39. R. de Daubeny, C. W. Bunn, and C. J. Brown, Proc. Roy. Soc. (London), A226, 531 (1954)