Effects of Organoclay on the Thermal Insulating Properties of Rigid Polyurethane Foams Blown by Environmentally Friendly Blowing Agents

  • Kim, Youn-Hee (Department of Chemical and Biological Engineering, Korea University) ;
  • Choi, Seok-Jin (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Ji-Mun (Department of Chemical and Biological Engineering, Korea University) ;
  • Han, Mi-Sun (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Woo-Nyon (Department of Chemical and Biological Engineering, Korea University) ;
  • Bang, Kyu-Tae (Department of Environmental Systems Engineering, Korea University)
  • Published : 2007.12.31

Abstract

A process designed to synthesize rigid polyurethane foam (PUF) with insulative properties via the modulation of PUF cell size via the addition of clay and the application of ultrasound was assessed. The blowing agents utilized in this study include water, cyclopentane, and HFC-365mfc, all of which are known to be environmentally-friendly blowing agents. The rigid PUFs were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI) and polyether polyol with a density of $50kg/m^3$. In addition, rigid PUFs/clay nanocomposites were synthesized with clay modified by PMDI with and without the application of ultrasound. The PUF generated using water as a blowing agent evidenced the highest tensile strength. The tensile strength of the PUF/nanocomposites was higher than that of the neat PUF and the strength was even higher with the application of ultrasound. The cell size of the PUF/clay nanocomposites was less than that of the neat PUF, regardless of the type of blowing agent utilized. It appears that the higher tensile strength and lower cell size of the PUF/clay nanocomposites may be attributable to the uniform dispersion of the clay via ultrasonic agitation. The thermal conductivity of the PUF/clay nanocomposites generated with HCFC-141b evidenced the lowest value when PUF/clay nanocomposites were compared with other blowing agents, including HFC-365mfc, cyclopentane, and water. Ultrasound has also proven effective with regard to the reduction of the thermal conductivity of the PUF/clay nanocomposites with any of the blowing agents employed in this study. It has also been suggested that the uniformly dispersed clay particles in the PUF matrix function as diffusion barriers, which prevent the amelioration of the thermal insulation property.

Keywords

References

  1. D. Klempner and K. C. Frisch, Handbook of Polymeric Foams and Foam Technology, Oxford University Press, New York, 1991
  2. K. S. Yang, X. Guo, W. Meng, J. Y. Hyun, I. K. Kang, and Y. I. Kim, Macromol. Res., 11, 488 (2003) https://doi.org/10.1007/BF03218981
  3. B. K. Kim, J. W. Seo, and H. M. Jeong, Macromol. Res., 11, 198 (2003) https://doi.org/10.1007/BF03218353
  4. S. M. Kang, D. C. Ku, J. H. Lim, Y. K. Yang, N. S. Kwak, and T. S. Hwang, Macromol. Res., 13, 212 (2005) https://doi.org/10.1007/BF03219054
  5. S. Subramani, J. M. Lee, J. H. Kim, and I. W. Cheong, Macromol. Res., 13, 418 (2005) https://doi.org/10.1007/BF03218475
  6. H. D. Park, J. W. Bae, K. D. Park, T. Ooya, N. Yui, J. H. Jang, D. K. Han, and J. W. Shin, Macromol. Res., 14, 73 (2006) https://doi.org/10.1007/BF03219071
  7. D. I. Cha, K. W. Kim, G. H. Chu, H. Y. Kim, K. H. Lee, and N. Bhattarai, Macromol. Res., 14, 331 (2006) https://doi.org/10.1007/BF03219090
  8. J. K. Yun, H. J Yoo, and H. D. Kim, Macromol. Res., 15, 22 (2007) https://doi.org/10.1007/BF03218748
  9. U.S. Environmental Protection Agency (www.epa.gov), Federal Register, Vol. 65, No. 243, Rules and Regulations, page 78980, December 18 , 2000
  10. A. Biedermann, C. Kudoke, A. Merten, E. Minogue, U. Rotermund, H. P. Ebert, U. Heinemann, J. Fricke, and H. Seifert, J. Cell. Plast., 37, 467 (2001) https://doi.org/10.1106/KEMU-LH63-V9H2-KFA3
  11. G. Wood, The ICI Polyurethane Handbook, 2nd Ed., John Wiely & Sons, New York, 1990
  12. G. Oertel, Polyurethane Handbook, Hanser Publisher, New York, 1993
  13. M. Modesti and A. Lorenzetti, Eur. Polym. J., 39, 263 (2003) https://doi.org/10.1016/S0014-3057(02)00198-2
  14. D.W. Van Krevelen, Properties of Polymers, 2nd Ed., Elsevier, New York, 1990
  15. K. H. Choe, D. S. Lee, and W. N. Kim, Polym. J., 36, 368 (2004) https://doi.org/10.1295/polymj.36.368
  16. W. J. Seo, Y. T. Sung, S. J. Han, Y. H. Kim, O. H. Ryu, H. S. Lee, and W. N. Kim, J. Appl. Polym. Sci., 101, 2879 (2006) https://doi.org/10.1002/app.23357
  17. W. J. Seo, Y. T. Sung, S. G. Kim, Y. B. Lee, K. H. Choe, S. H. Choe, S. B. Kim, and W. N. Kim, J. Appl. Polym. Sci., 102, 3764 (2006) https://doi.org/10.1002/app.24735
  18. W. J. Seo, H. C. Jung, and W. N. Kim, J. Appl. Polym. Sci., 90, 12 (2003) https://doi.org/10.1002/app.12238
  19. W. J. Seo, H. C. Jung, and W. N. Kim, J. Appl. Polym. Sci., 93, 2334 (2004) https://doi.org/10.1002/app.20717
  20. J. H. Chang and Y. U. An, J. Polym. Sci.; Part B: Polym. Phys., 40, 670 (2002)
  21. M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, Macromolecules, 36, 9851 (2003) https://doi.org/10.1021/ma035077x
  22. W. J. Choi, S. H. Kim, Y. J. Kim, and S. C. Kim, Polymer, 45, 6045 (2004) https://doi.org/10.1016/j.polymer.2004.06.033
  23. K. J. Yao, M. Song, D. J. Hourston, and D. Z. Luo, Polymer, 43, 1017 (2002)
  24. X. Cao, L. J. Lee, T. Widya, and C. Macosko, Polymer, 46, 775 (2005) https://doi.org/10.1016/j.polymer.2004.11.028
  25. T. Widya and C. W. Macosko, J. Macromol. Sci.; Part B: Phys., 44, 897 (2005) https://doi.org/10.1080/00222340500364809