Antioxidant and Inhibition on Angiotensin Converting Enzyme Activity of Colored Potato Extracts

유색감자 추출물의 항산화 및 항고혈압 활성

  • Park, Young-Eun (National Institute of Highland Agriculture, RDA) ;
  • Cho, Huyn-Mook (National Institute of Highland Agriculture, RDA) ;
  • Lee, Hyeon-Jin (Dept. of Herbal Medicine Resource, Kangwon National University) ;
  • Hwang, Young-Sun (Dept. of Herbal Medicine Resource, Kangwon National University) ;
  • Choi, Su-San-Na (Dept. of Herbal Medicine Resource, Kangwon National University) ;
  • Lee, Su-Jin (Dept. of Herbal Medicine Resource, Kangwon National University) ;
  • Park, Eun-Sun (Dept. of Herbal Medicine Resource, Kangwon National University) ;
  • Lim, Jung-Dae (Dept. of Herbal Medicine Resource, Kangwon National University) ;
  • Choung, Myoung-Gun (Dept. of Herbal Medicine Resource, Kangwon National University)
  • 박영은 (농촌진흥청 고령지농업연구소) ;
  • 조현묵 (농촌진흥청 고령지농업연구소) ;
  • 이현진 (강원대학교 생약자원개발학과) ;
  • 황영선 (강원대학교 생약자원개발학과) ;
  • 최수산나 (강원대학교 생약자원개발학과) ;
  • 이수진 (강원대학교 생약자원개발학과) ;
  • 박은선 (강원대학교 생약자원개발학과) ;
  • 임정대 (강원대학교 생약자원개발학과) ;
  • 정명근 (강원대학교 생약자원개발학과)
  • Published : 2007.12.31

Abstract

This experiment was conducted to enhance the colored potatoes utilization and to determine the biological activity of colored potato extracts. In order to understand the factors responsible for the potent antioxidant and antihypertensive ability of colored potatoes, it has been evaluated for anti-oxidative activity using Fenton's reagent/ethyl linoleate system and for free radical scavenging activity using the 1,1-diphenyl-2-picryl hydrazyl free radical generating system. There were significant differences of antioxidant activities in $50{\mu}g/mL$ extracts treatment among different colored potatoes. About two-fold higher radical scavenging activity was found in 'Daegwan 1-102', 'Daegwan 1-104' and 'Jasim' compared to that in 'Superior'. Based on the flesh color tested, potatoes with purple tuber showed higher radical scavenging activity than red potatoes, while white potato showed the lowest radical scavenging activity. The ability of 80% ethanol extracts from colored potatoes to influence the inhibitory activity of angiotensin converting enzyme(ACE) and xanthine oxidase(XOase) has also been investigated. Expect 'Jasim', the high levels of inhibition activity of xanthine oxidase in two colored potatoes such as 'Daegwan 1-102' and 'Daegwan 1-104' were highly correlated to $IC_{50}$ values of ACE inhibition activity. The various therapeutic benefit claims in the new functional medicinal usage of colored potatoes ascribed to the phenolic compounds and anthocyanin. This result revealed that the extracts of colored potatoes are expected to be good candidate for development into source of free radical scavengers and anti-hypertentive agent.

괴경 내부에 적색과 보라색 안토시아닌 색소가 풍부하게 함유되어 있고, 색상의 기호도 및 건강 기능성으로 인해 소비자로부터 기호도가 증대된 유색감자의 생리적 활성을 검토하기 위해 유색감자의 대조구로 괴경 내부가 백색인 수미 품종을 사용하고, 유색감자로서 괴경 내부가 적색인 대관 1-102호, 괴경 내부가 보라색인 자심품종과 대관 1-104호로 구분하여 항산화, 활성산소 소거능 및 항고혈압 활성을 비교, 검토한 결과는 아래와 같다. 1. 유색감자 추출물의 항산화 활성 검정결과 추출물의 농도가 $10{\mu}g/mL$ 수준에서는 유색감자별 차이를 나타내지 않았으나, $50{\mu}g/mL$을 처리한 경우 시료 간 차이를 뚜렷하게 나타내었으며, 유색감자 중 괴경내부의 색상이 적색인 대관 1-102호가 34%의 높은 저해율을 나타내어 30%의 저해율을 나타낸 활성평가 대조구인 $\alpha-tocopherol$보다 높은 항산화 활성을 나타내었다. 2. 유색감자 추출물의 자유 라디칼 소거 활성에서는 괴경 내부가 보라색인 대관 1-104호가 50%의 소거능을 나타내는 농도가 $9.83{\mu}g/mL$로 가장 높은 라디칼 소거활성을 나타내었으며, 이 결과 또한 대조시약인 $\alpha-tocopherol$이나 BHT보다 높은 소거 활성을 나타내었다. 3. 유색감자 추출물의 xanthine oxidase 활성 억제효과를 검토한 결과 유색감자 간에 큰 차이를 나타내어 대관 1-102호와 1-104호의 경우 xanthine oxidase 활성을 50% 저해하는 데 필요한 농도는 약 $26{\mu}g/mL$ 수준으로 가장 높게 조사되었으며, 다음으로 수미($46{\mu}g/mL$), 자심($49{\mu}g/mL$)의 순으로 조사되었다. 4. 유색감자 추출물의 ACE 저해 활성을 검토한 결과 항고혈압 대조구 활성물질인 captopril의 수준에는 미치지 못하나 유색감자 간에는 명확한 차이를 나타내었다. 괴경내부색상이 적색인 대관 1-102호가 $117.7{\mu}g/mL$으로 가장 높은 ACE 저해 활성을 나타내었으며, 내부색상이 보라색인 대관 1-104호와 자심은 $130{\mu}g/mL$로 유사한 양상을 나타내었으며, 괴경내부 색상이 백색을 나타내는 수미품종은 $192{\mu}g/mL$으로 가장 낮은 활성을 나타내었다. 5. 이상의 결과를 종합해 볼 때 괴경 내부에 적색 혹은 보라색 안토시아닌을 다량 함유한 유색감자는 기존 백색을 가진 일반감자에 비해 항산화, 자유레디칼 소거활성 및 항고혈압 활성이 높고, 시각적 식미감을 증대시키므로 유색감자는 기능성이 증대된 식용감자로서의 이용가치가 충분한 것으로 판단된다.

Keywords

References

  1. Al-Saikhan, M. S., L. R. Howare, and J. C. Miller. 1995. Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum L.). J. Food Sci. 60 : 341-347 https://doi.org/10.1111/j.1365-2621.1995.tb05668.x
  2. Al-Saikhan, M. S. 2000. Antioxidants, proteins, and caro-tenoids in potato (Solanum tuberosum, L.) Department of Horticutural Sciences. Texas A&M University, College Station, vol. Ph.D
  3. Andersen, M., S. Opheim, D. W. Aksnes, and N. A. Froystein. 1991. Structure of petanin, an acylated anthocyanin isolated from Solanum tuberosum, using homo-and hetero-nuclear two-dimensional nuclear magnetic resonance techniques. Phytochem. Anal. 2 : 230-236 https://doi.org/10.1002/pca.2800020510
  4. Brown, C. R., R. Wrolstad, R. Durst, C.-P. Yang, and B. Clevidence. 2003. Breeding studies in potatoes containing high concentrations of anthocyanins. Amer. J. Potato Res. 80 : 241-250 https://doi.org/10.1007/BF02855360
  5. Brown, C. R. 2005. Antioxidant in potato. Am J. potato Res. 82 : 163-172 https://doi.org/10.1007/BF02853654
  6. Cao, G., R. M. Rusell, N. Lischner, and R. L. Prior. 1998. Serum antixoxidant capacity is increased by consumption of strawberry, spinach, red wine or vitamin C elderly women J. Nutr., 128 : 2383-2390
  7. Dao, L. and M. Friedman. 1992. Chlorogenic acid content of fresh and processed potatoes determined by ultraviolet spectrophotometry. J. Agr. Food Chem. 40 : 2152-5156 https://doi.org/10.1021/jf00023a022
  8. Dao, L. and M. Friedman. 1994. Chlorophyll, chlorogenic acid, glycoalkaloid, and protease inhibitor content of fresh and green potatoes. J. Agr. Food Chem. 42 : 633-639 https://doi.org/10.1021/jf00039a006
  9. Friedman, M. 1997. Chemistry, biochemistry, and dietary role of potato polyphenols: A review. J. Agr. Food Chem. 45 : 1523-1540 https://doi.org/10.1021/jf960900s
  10. Halliwell B. and J. M. C. Gutteridge. 1993. Free Radicals in Biology and Medicine, Clarendon Press, Oxford, pp. 22-81
  11. Harborne, J. B. 1958. The chromatographic identification of anthocyanin pigments. J. Chrom. 1 : 473- 488 https://doi.org/10.1016/S0021-9673(00)93449-6
  12. Nice D. J. and D. S. Robinson. 1992. Inhibition of lipid auto-xidation by bovine superoxide dismutase. Food Chem. 45 : 99-105 https://doi.org/10.1016/0308-8146(92)90017-V
  13. Johnson, C. A. 1995. 1995-1996 seed acres reflect more varieties, market shifts. Valley Potato Grower. 61 : 13-16
  14. Juan, A. T., C. Emma, C. E. Juan, A. T. Francisco, and I. G. Maria. 2002. Induction of antioxidant flavonol biosynthesis in freshcut potatoes: Effect of domestic cooking. J. Agr. Food Chem. 50 : 5925-5931 https://doi.org/10.1021/jf020330y
  15. Kahkonen, M. P., A. I. Hopia, H. J. Vuorela, J. Rauha, K. Pihlaja, T. S. Kujala, and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agr. Food Chem. 47 : 3954-3962 https://doi.org/10.1021/jf990146l
  16. Kanatt, S. R., R. Chander, P. Radhakrishna, and A. Sharma. 2005. Potato peel extract-a natural antioxidant for retarding lipid peroxidation in radiation processed lamb meat. J. Agric. Food Chem. 53 : 1499-1504 https://doi.org/10.1021/jf048270e
  17. Lewis, C. E. 1996. Biochemistry and regulation of anthocyanin synthesis in potato and other tuber-bearing Solanum species. Ph. D. thesis, Dept. of Plant & Plant Microbial Science, Univ. of Canterbury, Christchurch, New Zealand
  18. Miura, K. and N. Nakatani. 1989. Antioxidative activity of flavonoids from thyme (Thymus vulgaris L.). Agric. Biol. Chem. 53 : 3043-3045 https://doi.org/10.1271/bbb1961.53.3043
  19. Nara, K., T. Miyoshi, T. Honma, and H. Koga. 2006. Antioxidative activity of boundform phenolics in potato peel. Biosci. Biotechnol. Biochem., 70 : 1489-1491 https://doi.org/10.1271/bbb.50552
  20. Nijveldt, R. J., E. van Nood, D. E. van Hoorn, P. G. Boelens, K. van Norren, and van P. A. Leeuwen. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 74 : 418-425 https://doi.org/10.1093/ajcn/74.4.418
  21. Parejo, I., F. Viladomat, J. Bastida, A. Rosas-Romero, N. Flerlage, J. Burillo, and C. Codina. 2002. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled Mediterranean herbs and aromatic plants. J. of Agri. Food Chem. 50 : 6882-6890 https://doi.org/10.1021/jf020540a
  22. Saito, Y., K. Nakamura, K. Kawato, and S. Imayasu. 1992. Angiotensin I converting enzyme inhibitors in sake and its by products. Nippon Nogeikagaku Kaishi. 66 : 1081-1087 https://doi.org/10.1271/nogeikagaku1924.66.1081
  23. Sasche, J. 1973. Anthocyane in den kartoffelsorten Urgenta and Desiree. Z. Lebensm. Unters. Forsch. 153 : 294-300 https://doi.org/10.1007/BF01140361
  24. Satue-Gracia, M., T. M. Heinonen, and E. N. Frankel. 1997. Antioxidant activity of anthocyanins in LDL and lecithin liposome systems. J. Agric. Food Chem. 45 : 3362-3367 https://doi.org/10.1021/jf970234a
  25. Shakya, R. and D. A. Navarre. 2006. Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. J. Agric. Food Chem. 54 : 5253-5260 https://doi.org/10.1021/jf0605300
  26. Tsuda, T., F. Horio, and T. Osawa. 1998. Dietary cyanidin 3-O-beta-glucoside increases ex vivo oxidation resistance of serum in rats. Lipid, 33 : 583-588 https://doi.org/10.1007/s11745-998-0243-5
  27. Wang, H., G. Cao, and R. L. Prior. 1997. Oxygen radical absorbing capacity of anthocyanin J. Agri. Food Chem 45 : 304-309 https://doi.org/10.1021/jf960421t
  28. Winterbourn, C. C. and A. J. Kettle. 2003. Radical-radical reactions of superoxide: a potential route to toxicity. Biochem. Biophys. Res. Commun. 305 : 729-736 https://doi.org/10.1016/S0006-291X(03)00810-6
  29. Yang, C. S., J. M. Landau, M. T. Huang, and H. L. Newmark. 2001. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 21 : 381-406 https://doi.org/10.1146/annurev.nutr.21.1.381