DOI QR코드

DOI QR Code

Region Separateness-based Edge Detection Method

영역의 분할정도에 기반한 에지 검출 기법

  • Seo, Suk-T. (Dept. of Electrical Engineering, Yeungnam University) ;
  • Jeong, Hye-C. (Dept. of Electrical Engineering, Yeungnam University) ;
  • Lee, In-K. (Dept. of Electrical Engineering, Yeungnam University) ;
  • Kwon, Soon-H. (Dept. of Electrical Engineering, Yeungnam University)
  • Published : 2007.12.25

Abstract

Edge is a significant element to represent boundary information between objects in images. There are various edge detection methods, which are based on differential operation, such as Sobel, Prewitt, Roberts, Canny, Laplacian, and etc. However the conventional methods have drawbacks as follow : (i) insensitivity to edges with gentle curve intensity, (ii) detection of double edges for edges with one pixel width. For the detection of edges, not only development of the effective operators but also that of appropriate thresholding methods are necessary. But it is very complicate problem to find an appropriate threshold. In this paper, we propose an edge detection method based on the region separateness between objects to overcome the drawbacks of the conventional methods, and a thresholding method for the proposed edge detection method. We show the effectiveness of the proposed method through experimental results obtained by applying the proposed and the conventional methods to well-known test images.

에지는 영상에서 객체와 객체 사이의 경계를 나타내는 중요 정보로서 Sobel, Prewitt, Roberts, Canny 등의 미분 연산자에 기반한 다양한 에지 검출 기법이 있다. 그러나 이러한 기법들은 밝기값 변화가 완만한 부분에서의 에지 검출에는 둔감하며, 한 픽셀의 두께로 이루어진 에지의 경우 2중 에지를 검출하는 문제점이 있다. 또한 에지를 검출하기 위해서는 효과적 에지 검출 연산자뿐만 아니라 적절한 임계값이 필수적이다. 그러나 적절한 임계값을 찾는 것은 매우 까다로운 문제이다. 본 논문에서는 기존의 미분 연산자에 기반한 에지 검출 기법의 문제점을 극복하기 위해서 픽셀간의 미분값이 아니라 영역과 영역의 분할정도를 기반으로 에지를 검출하는 기법과 이에 대한 임계값 결정 기법을 제안한다. 그리고 기존의 미분 연산자에 기반한 에지 추출 기법과 제안한 기법을 시험 영상에 적용하여 얻어진 결과를 통하여 제안한 기법의 효용성을 보인다.

Keywords

References

  1. R. C. Gonzalez and R. E. Woods, 'Digital Image Processing', Prentice Hall, 2002
  2. J. Canny, 'A computational approach to edge detection,' IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 8, No.6, pp. 679-698, 1986 https://doi.org/10.1109/TPAMI.1986.4767851
  3. L. R. Liang, C. G. Looney, 'Competitive fuzzy edge detection,' Applied Soft Computing, Vol. 3, No.2, pp. 123-137. 2003 https://doi.org/10.1016/S1568-4946(03)00008-5
  4. S. Zheng, J. Liu, J. W. Tian, 'A new efficient SVM-based edge detection method,' Pattern Recognition Lett., Vol. 25, No. 10, pp. 1143-1154, 2004 https://doi.org/10.1016/j.patrec.2004.03.009
  5. L. Hu, H. D. Cheng, M. Zhang, 'A high performance edge detector based on fuzzy inference rules,' Information Sciences, Vol. 117, No. 21, pp. 4768-4784, 2007
  6. S. Mallat, 'Zero-crossings of a wavelet transform,' IEEE Trans. Information Theory, Vol. 37, No.4, pp. 1019-1033, 1991 https://doi.org/10.1109/18.86995
  7. S. Mallat, S. Zhong, 'Characterization of signals from multiscale edges,' IEEE Trans. Pattern Analysis and Machine Intelligence. Vol. 14, No. 7, pp. 710-732, 1992 https://doi.org/10.1109/34.142909
  8. T. Aydin, Y. Yemez, E. Anarim, B. Sankur, 'Multidirectional and multiscale edge detection via M-band wavelet transform,' IEEE Trans. Image Processing, Vol. 5, No.9, pp. 1370-1377, 1996 https://doi.org/10.1109/83.535850
  9. G. Sun, Qinhuo Liu, Qiang Liu, C. Ji, X. Li, 'A novel approach for edge detection based on the theory of universal gravity,' Pattern Recognition, Vol. 40, No. 10, pp. 2766-2775, 2007 https://doi.org/10.1016/j.patcog.2007.01.006
  10. Z. Hou, T. S. Koh, 'Robust edge detection,' Pattern Recognition, Vol. 36. No.9, pp. 2083-2091, 2003 https://doi.org/10.1016/S0031-3203(03)00046-3
  11. R. M. Haralick, 'Digital step edges from zero crossing second directional derivatives,' IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 6, No.1, pp. 58-68. 1984 https://doi.org/10.1109/TPAMI.1984.4767475
  12. Q. Ji, R. M. Haralick, 'Efficient facet edge detection and quantitative performance evaluation,' Pattern Recognition, Vol. 35, No.3, pp, 689-700. 2002 https://doi.org/10.1016/S0031-3203(01)00035-8
  13. J. S. Huang, D. H. Tseng, 'Statistical theory of edge detection,' Computer Vision, Graphics, Image Processing, Vol. 43, No, 3, pp. 337-346, 1988 https://doi.org/10.1016/0734-189X(88)90087-4
  14. R. R. Rakesh, P. Chaudhuri, C. A. Murthy, 'Thresholding in edge detection: a statistical approach,' IEEE Trans. Image Processing, Vol. 13, No.7. pp. 927-936. 2004 https://doi.org/10.1109/TIP.2004.828404
  15. N. Otsu, 'A threshold selection method from gray-level histograms,' IEEE Transaction on System, Man, and Cybernetics, Vol. 9, No.1, pp, 62-66, 1979 https://doi.org/10.1109/TSMC.1979.4310076
  16. P. K. Sahoo, S. Soltani, A. K. C. Wong, Y. C. Chen, 'A survey of the thresholding techniques,' Computer Vision, Graphics, Image Processing, Vol. 41, pp. 233-260, 1988 https://doi.org/10.1016/0734-189X(88)90022-9
  17. L. Hertz, R. W. Schafer, 'Multilevel thresholding using edge matching,' Computer Vision, Graphics, Image Processing, Vol. 44, No.3, pp. 279-295, 1988 https://doi.org/10.1016/0734-189X(88)90125-9
  18. Z. Chi, H. Yan, T. Pham, Fuzzy algorithms : with applications to image processing and pattern recognition. World Scientific, 1996
  19. C. C. Kang, W. J. Wang, 'A novel edge detection method based on the maximizing objective function,' Pattern Recognition, Vol. 40, No.2, pp. 609-618. 2007 https://doi.org/10.1016/j.patcog.2006.03.016